
THÈSE DE DOCTORAT DE

L’UNIVERSITE DE NANTES

Ecole Doctorale N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : INFO – Informatique

Par

« Vincent RAVENEAU »
« Interaction in Progressive Visual Analytics »

« An application to progressive sequential pattern mining »

Thèse présentée et soutenue à NANTES , le 4 Novembre 2020
Unité de recherche : LS2N – Laboratoire des Sciences du Numérique de Nantes

Rapporteurs avant soutenance :

Nicolas LABROCHE Maître de conférences HDR, LIFAT, Université de Tours
Adam PERER Assistant Research Professor, Human-Computer Interaction Institute, Carnegie Mellon University

Composition du jury :

Présidente : Béatrice DAILLE Professeure des universités, LS2N, Université de Nantes
Examinateur : Jean-Daniel FEKETE Directeur de Recherche, INRIA Saclay, INRIA

Dir. de thèse : Yannick PRIÉ Professeur des universités, LS2N, Université de Nantes

Co-enc. de thèse : Julien BLANCHARD Maître de conférences, LS2N, Université de Nantes

ACKNOWLEDGMENTS

First, I would like to thank the members of my PhD committee: Nicolas Labroche and Adam
Perer, for agreeing to review my work and provide valuable feedback; Béatrice Daille, for agree-
ing to preside this committee; Jean-Daniel Fekete, for his role in the committee as well as for
all the great discussions and support throughout the thesis.

Second, I would like to express my gratitude to my advisors, Yannick Prié and Julien Blan-
chard, for their guidance, support and help during this work.

I would also like to thank the members of the LS2N laboratory that I have been pleased to
meet during these years. This includes members of the DUKe team, as well as my fellow PhD
students – Adeline, David, Erwan, Ziwei, Jiajun and Adrien.

Finally, my sincere thanks goes to my friends and family for their continuous support, even
though I spent too little time with them during these years. I am very much thankful to my
girlfriend, Maëva, for her love and encouragements.

3

TABLE OF CONTENTS

1 Introduction 9

I State of the art 13

2 From Visual Analytics to Progressive Visual Analytics 17
1 Visual Analytics . 17

1.1 Origins and early definitions . 17
1.2 Current definition . 19
1.3 The importance of insights . 20
1.4 Generating knowledge with Visual Analytics 21
1.5 Modeling the tasks performed with Visual Analytics 23
1.6 Examples of existing Visual Analytics tools 27
1.7 Degree of automation in Visual Analytics systems 30
1.8 Towards Progressive Visual Analytics . 33

2 Progressive Visual Analytics . 33
2.1 Definition and origin of the progressive paradigm 33
2.2 Progressive algorithms compared to related algorithm types 35
2.3 Existing implementations of Progressive Visual Analytics systems 37
2.4 Designing Progressive Visual Analytics systems 44
2.5 Interaction-related user studies in Progressive Visual Analytics 49

3 Conclusion – Challenges for Progressive Visual Analytics 50

3 Sequential Pattern Mining 53
1 Mining patterns in sequences . 54

1.1 General definitions . 54
1.2 Sequential patterns . 57
1.3 Episodes . 57
1.4 Constraints on the mining process . 59
1.5 Counting pattern occurrences . 60

2 Sequential Pattern mining algorithms . 64
2.1 Apriori-like algorithms . 64
2.2 Pattern growth algorithms . 66

5

TABLE OF CONTENTS

2.3 Implementations . 69
3 Conclusion – Towards Progressive Pattern Mining 70

3.1 Sequential Pattern mining within Progressive Visual Analytics 71
3.2 Progressiveness in Sequential Pattern mining 71

II Propositions 73

4 Interactions in Progressive Visual Analytics 79
1 A framework of possible interactions with an algorithm in Progressive Visual An-

alytics . 80
1.1 Interactions between an analyst and an algorithm 81
1.2 Progressive Visual Analytics systems seen through our framework 82

2 An updated definition of Progressive Visual Analytics 84
3 Indicators to guide the analysis . 87

3.1 Indicators for the analyst . 87
3.2 Indicators in existing systems . 89

4 Conclusion . 89

5 Towards Progressive Pattern Mining 91
1 Analysis tasks performed with patterns . 92

1.1 Choosing a task model . 92
1.2 Andrienko and Andrienko (2006): data model 92
1.3 Andrienko and Andrienko (2006): task model 93
1.4 Data model for sequential patterns . 98
1.5 Task model for patterns . 99
1.6 Leveraging our task model . 100

2 Guidelines for Progressive Pattern Mining algorithms 101
3 Conclusion . 103

6 PPMT: a Progressive Pattern Mining Tool to explore activity data 105
1 Design process . 106

1.1 Organization of the process . 106
1.2 Main design choices . 107
1.3 The coconotes dataset . 109

2 Features . 111
2.1 Technical features . 112
2.2 Supported analysis tasks . 112

3 User interface . 113

6

TABLE OF CONTENTS

3.1 Dataset-related panels . 114
3.2 Algorithm and pattern-oriented panels . 119
3.3 Visualization-oriented panels . 124
3.4 Dataset selection . 129

4 Architecture . 129
4.1 Logical architecture . 129
4.2 Implemented architecture . 130

5 Progressive pattern mining in PPMT . 132
5.1 Design and implementation of the algorithm 133
5.2 Steering the algorithm . 135
5.3 The algorithm . 137
5.4 Comparison with existing Progressive Pattern Mining algorithms 138

6 Evaluations . 139
6.1 Compliance with existing recommendations 139
6.2 Performances of a progressive pattern mining algorithm derived from an

existing algorithm . 144
7 Conclusion . 147

7 Comparing the effect of various progressive interactions on data analysis tasks 149
1 Material and protocol . 150

1.1 Experiment material . 150
1.2 Experiment protocol . 150
1.3 Collected data . 153

2 Results . 153
2.1 Time to answer questions . 153
2.2 Correctness of answers . 154
2.3 Interaction with the algorithm . 154
2.4 Affirmation ratings . 155

3 Discussion . 155
3.1 Impact of interactions on answer time . 155
3.2 Impact of interactions on correctness . 157
3.3 Use of available actions by the participants 157

4 Conclusion . 157

8 General conclusion 159
1 Contributions . 160

1.1 Major contributions . 160
1.2 Secondary contributions . 161

7

TABLE OF CONTENTS

2 Perspectives and future work . 161

References 165

Appendices 174

A Existing pattern mining algorithms 174
1 Apriori-like algorithms . 174
2 Pattern growth algorithms . 176

B First user experiment 177

C Evolution of PPMT’s user interface 181

8

CHAPTER 1

INTRODUCTION

This manuscript presents the work conducted during my PhD thesis at the University of Nantes
under the supervision of Yannick Prié and Julien Blanchard, as a member of the DUKe team
(Data User Knowledge) of the LS2N laboratory (Laboratoire des Sciences du Numérique de
Nantes). The funding came from the French Ministère de l’Éducation Supérieure et de la
Recherche. A timeline with the milestones of this work is available in figure 1.1.

Sep Jan 2016 May Sep Jan 2017 May Sep Jan 2018 May Sep Jan 2019

Development of PPMT User experiment

VIS 2016 VIS 2018

Figure 1.1: Timeline representing the different steps in our work. Publications are indicated above
the axis.

Scientific context

While data analysis predates the invention of computers, the processing power they offer has
led to many new possibilities besides raw number crunching, such as data transformation and
visualization. The paradigm of Visual Analytics proposes that data analysis should benefit from
both human and computer respective strengths (Bertini & Lalanne, 2010; D. Keim, Kohlham-
mer, Ellis, & Mansmann, 2010), by combining humans’ ease to derive insights from data visu-
alizations and make decisions, with computers’ ability to process very large amounts of data.
However, these processes suffer from one major pain point: when using time-expensive algo-
rithms or working with large datasets, the analyst has to wait for the computation to complete.
This speed bump (Pezzotti et al., 2017; Stolper, Perer, & Gotz, 2014) is detrimental to their
focus and ability to explore the data at hand (Liu & Heer, 2014).

From this observation, new research domains have emerged that offer alternatives to these
imposed idle times for the analyst. The paradigm of Progressive Visual Analytics is one of
these, and its solution is articulated around two core ideas that define the characteristics of
progressive algorithms. The first one is to output intermediate results of increasing quality
during the computation, instead of waiting for a unique result at the end. This allows the analyst

9

Introduction

to start working on a broad picture of what can be expected, that will be improved as the
algorithm’s computation continues. The second idea is that the analyst is able to interact with
the running algorithm, by steering its remaining computation without restarting it. Combined
with the intermediate results, this allows the analyst to leverage his interpretations and findings
from the early results to guide the analysis towards targets of interest.

Our work takes place within the Progressive Visual Analytics paradigm, and focuses on the
exploratory analysis of activity traces. This kind of temporal data consists of events recorded
during specific human activities, and can be collected for a wide range of contexts, at various
granularity levels (from broad actions to very precise events). As such, exploring activity data
can be used to gain insights into the behavior of people, either in isolation or with regards to
others’ recordings. One can then infer useful knowledge, depending on the kind of data that was
recorded. For example, records of medical events can be used to investigate bad combinations
of treatments, or long-time side effects. Another application could be learning how software is
really used from the recordings of its users, in order to improve it. Activity data usually consists
of large amount of data (especially when recorded at a fine granularity), which means they can
benefit from the Progressive Visual Analytics approach. This kind of data can be explored using
various algorithmic techniques. In this work, we decided to use pattern mining.

Challenges and research goals

Our work is focused on the interaction between a human analyst and a progressive algorithm.
Based on our review of the literature, we identified four challenges that drove our work on this
matter. The first two are directly related to interaction in Progressive Visual Analytics (PVA),
while the last two target Progressive Pattern Mining (PPM).

Clarify what “interaction” means in the
context of Progressive Visual Analytics,
as well as investigate the role of the al-
gorithm in the process.

Challenge PVA1

Investigate the consequences of interac-
tions between the human and the algo-
rithm on the analysis process.

Challenge PVA2

Investigate progressive pattern mining as
a tool for data exploration and not only for
pattern exploration.

Challenge PPM1

Investigate the ways to make a pattern
mining algorithm progressive, the rele-
vant interactions when using such algo-
rithm and how they should be imple-
mented.

Challenge PPM2

10

Introduction

Contributions

We strived to provide theoretical, practical and experimental contributions to our research do-
main. We identified the following six contributions, of which we consider four to be major.

Major contributions

C1. A study on interaction within a progressive analysis process. This contribution tar-
gets our PVA1 and PVA2 challenges, and encompasses the following elements:

C1.1. A framework describing the actions an analyst can perform when interacting with a
progressive algorithm;

C1.2. A model of how these actions impact a generic data analysis system;
C1.3. An evaluation of the impact of “progressiveness” on an algorithm’s performances.

C2. A clarification of the process of Progressive Visual Analytics, with regards to the
role of the algorithm in the process. This contribution targets our PVA1 challenge, and
encompasses the following elements:

C2.1. A clear definition for the notion of steering;
C2.2. An updated definition of Progressive Visual Analytics, that offers a more precise

vision of the interactions that can take place within Progressive Visual Analytics;
C2.3. A model of the Progressive Visual Analytics process, based on a classical Visual

Analytics model (Sacha et al., 2014).

C3. PPMT, a progressive pattern mining system. This contribution targets our PPM1 and
PPM2 challenges, and encompasses the following elements:

C3.1. The PPMT system itself, that supports the analysis tasks we identified (C5), imple-
ments all the actions from our framework (C1.1), and follows our guidelines (C6);

C3.2. A review of PPMT’s compliance with existing recommendations for the design of
Progressive Visual Analytics systems.

C4. A user experiment focused on the impact of the interactions between the analyst
and the algorithm on a progressive analysis process. This contribution targets our
PVA2 challenge.

Secondary contributions

C5. A data and task model for an analyst exploring temporal data with patterns, special-
ized from the general model of Andrienko and Andrienko (2006). This contribution

11

Introduction

targets our PPM2 challenge.

C6. A set of five guidelines for the design of a progressive algorithm for pattern mining
in sequences. This contribution targets our PPM1 challenge.

Structure of the manuscript

The first part of the manuscript is entitled “State of the art”. It contains two chapters presenting
our review of the state of the art, and identifying several challenges. In chapter 2, entitled “From
Visual Analytics to Progressive Visual Analytics ”, we focus on Progressive Visual Analytics-
related works, starting with an overview of Visual Analytics that leads to Progressive Visual
Analytics. We then review existing Progressive Visual Analytics work, focusing on its defining
characteristics, the existing systems and their design, as well as on existing interaction-related
studies of Progressive Visual Analytics. We then switch in chapter 3, “Sequential Pattern
mining”, to sequential pattern mining, presenting the different kinds of sequential patterns that
can be found in the literature, as well as the different families of pattern mining algorithms.

The second part of the manuscript, “Propositions”, is dedicated to the presentation of our
contributions. In chapter 4, entitled “Interactions in Progressive Visual Analytics ”, we address
the question of interactions in Progressive Visual Analytics (C1) and propose an updated def-
inition of the Progressive Visual Analytics paradigm (C2). Chapter 5, “Towards Progressive
Pattern Mining ”, focuses on the notion of Progressive Pattern Mining, on the tasks an analyst
exploring temporal data with patterns can perform (C5), and on the design of dedicated algo-
rithms (C6). In chapter 6, “PPMT: a Progressive Pattern Mining Tool to explore activity data”,
we present PPMT, our Progressive Pattern Mining system (C3), and its evaluation (C1). In
chapter 7, “Comparing the effect of various progressive interactions on data analysis tasks”,
we relate a user experiment we conducted that focused on the impact interactions between the
analyst and the algorithm have on a progressive analysis process (C4).

In chapter 8, “General conclusion”, we finally reflect on various aspects of the presented
work, while opening up on future works.

12

PART I

State of the art

13

In this first part, we present our review of exiting works in Progressive Visual Analytics and
sequential pattern mining, the two research domains we were interested in. For the sake of
clarity, each domain is presented in its own chapter.

Chapter 2 is about Progressive Visual Analytics, the data analysis paradigm at the core of
our work. While some earlier works comply with its definition, its inception is fairly recent,
and came as an answer to some limitations of the Visual Analytics paradigm. As such, in
order to offer a comprehensive perspective on Progressive Visual Analytics, we open with a
presentation of Visual Analytics in section 2.1. Throughout this section, we review the evolution
of the definition of Visual Analytics, present the central concept of insights, and present the
knowledge generation process and task models that have been proposed for this paradigm. We
also present some of the existing Visual Analytics systems, and discuss their various degrees
of automation. The section concludes with the limitations that Visual Analytics systems face
when dealing with large datasets or time-consuming algorithms. Having presented the context
that led to its inception, we focus on Progressive Visual Analytics in section 2.2. We present its
fundamental concepts and definition, highlight the differences between progressive algorithms
and other closely related algorithm types, and review existing implementations of the paradigm.
We also present existing works on the design of Progressive Visual Analytics systems, as well
as user studies that focus on interaction within this paradigm. In section 2.3, we conclude the
chapter by identifying two main challenges for Progressive Visual Analytics.

Chapter 3 is focused on Sequential Pattern mining. While not exhaustive, this review aims at
providing by itself a good understanding of the domain and what it offers in terms of data anal-
ysis techniques. In section 3.1, we present the general task of mining patterns in sequences.
We first provide necessary definitions, before introducing the two types of Sequential Patterns
that are found in the literature. The section closes with a presentation of the various constraints
one can apply to the mining process, and of the different ways to count a pattern’s occurrences.
Section 3.2 is dedicated to pattern mining algorithms, in which we present the two families that
can be found in the literature, Apriori-like and pattern growth, and discuss their available imple-
mentations. Section 3.3 concludes both this chapter and our review of the state of the art. In it,
we consider the notion of Progressive Pattern Mining, and identify two additional challenges.

15

CHAPTER 2

FROM VISUAL ANALYTICS TO

PROGRESSIVE VISUAL ANALYTICS

Associating humans and computers to benefit from the strengths of both has been suggested
since the early days of computer science. Some research domains have emerged from this
need, such as Visual Analytics, a data analysis paradigm built upon the idea of having a human
analyst explore data visualizations. However, when datasets grow too large or when algorithms
become too time-consuming, the promises of Visual Analytics are diminished by imposed wait-
ing times for the analyst. To provide an alternative to these problematic cases, the paradigm of
Progressive Visual Analytics has emerged, and offers to solve this problem by increasing the
interactivity of the analysis process.

This chapter aims at providing an extensive review of the current state of research on Pro-
gressive Visual Analytics. Section 2.1 is dedicated to Visual Analytics, and presents the domain
and its aspects that lead to the aforementioned limitations. Section 2.2 is then dedicated to the
presentation and review of the current research on Progressive Visual Analytics.

1 Visual Analytics

1.1 Origins and early definitions

The first use of the term “Visual Analytics ” is by Wong and Thomas (2004), who define it as
follows:

A contemporary and proven approach to combine the art of human intuition and the
science of mathematical deduction to directly perceive patterns and derive knowl-
edge and insight from them.

They do so in an introduction to a series of six articles by Elizabeth G. Hetzler and Turner
(2004), Teoh, Ma, Wu, and Jankun-Kelly (2004), D. A. Keim, Panse, Sips, and North (2004),
Nesbitt and Barrass (2004), Schmidt et al. (2004) and Lee, Girgensohn, and Zhang (2004).
Even though these articles do not use the term (except a brief mention by Teoh et al.), Wong
and Thomas deem them representative of Visual Analytics as they conceive it. They view Visual

17

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Analytics as a solution to deal with the size, variety and complexity of data that may need to be
processed, expecting it to “[enable] detection of the expected and discovery of the unexpected
within massive, dynamically changing information spaces”.

The following year, Cook and Thomas (2005) published what they call a “research and
development agenda for Visual Analytics ”, in which they provide a shorter definition of Visual
Analytics:

The science of analytical reasoning facilitated by interactive visual interfaces. (Cook
and Thomas (2005), page 4)

In this book, they provide a vision for the potential of Visual Analytics, almost exclusively
stemming from the September 11, 2001 terrorist attacks and the need for better analysis tools
to react during and before a crisis. They summarize the challenge they face as “the analysis of
overwhelming amounts of disparate, conflicting, and dynamic information to identify and prevent
emerging threats, protect our borders, and respond in the event of an attack or other disaster”.
In order to help tackle this problem, they present a vision of Visual Analytics that combines the
following elements:

• Analytical reasoning techniques that enable users to obtain deep insights that
directly support assessment, planning, and decision making

• Visual representations and interaction techniques that take advantage of the
human eye’s broad bandwidth pathway into the mind to allow users to see,
explore, and understand large amounts of information at once

• Data representations and transformations that convert all types of conflicting
and dynamic data in ways that support visualization and analysis

• Techniques to support production, presentation, and dissemination of the re-
sults of an analysis to communicate information in the appropriate context to a
variety of audiences.

(Cook and Thomas (2005), page 4)

Throughout the book, Cook and Thomas review the state of the art relevant for their vision
of Visual Analytics to provide a set of recommendations to guide its development. In particular,
they stress the importance of creating tools that will support a collaborative analytic reasoning
about complex problems by building upon “existing theoretical foundations of reasoning, sense-
making, cognition and perception”. They suggest that this should be done through research, by
developing “a science of visual representations” and “a science of interactions” to support the
analytical reasoning process. In parallel with these scientific recommendations, they also stress
the importance of building practical tools to implement these new paradigms and incentivize
their insertion into operational environments.

18

2.1. Visual Analytics

1.2 Current definition

Cook and Thomas (2005) conclude their presentation of Visual Analytics by stressing the fact
that the vision they give will most probably evolve in the following years, as Visual Analytics will
mature. Indeed, a few years later, D. Keim et al. (2008) provide a more specific definition for
Visual Analytics:

[A combination of] automated analysis techniques with interactive visualisation for
an effective understanding, reasoning and decision making on the basis of very
large and complex data sets. (D. Keim et al. (2010), page 7)

Since the research community has responded to Cook and Thomas (2005)’s “call to action”
on Visual Analytics, D. Keim et al. (2008) present a vision of Visual Analytics where the ques-
tions of adoption and integration into existing environments are absent. Instead, they are more
focused on dealing with what they call the “information overload problem”, which can lead to
an analyst getting lost in data that may be either irrelevant to her current task, processed in an
inappropriate way or presented in an inappropriate way. D. Keim et al. (2008) also keep the
idea of Visual Analytics being applicable to a wide array of people (having varied skills, goals
and priorities) in completely different circumstances.

Two years later, D. Keim et al. (2010) propose a review of the state of Visual Analytics and its
application in various research communities (data management, data mining, spatio-temporal
data analysis, system infrastructure, perception, cognition and evaluation). They keep D. Keim
et al. (2008)’s definition of Visual Analytics, and identify a set of challenges for Visual Analytics
organized into four categories:

Data challenges. Handling large datasets poses challenges with regards to storage, re-
trieval, transmission, processing time and visualization scalability. The heterogeneous nature
of the data increases the complexity of its processing, as does the variation in quality and for-
malism. Specific cases are also adding to the complexity, such as handling streaming data or
semantic information (metadata) and their integration in the analysis process.

User challenges. Minimizing cognitive and perceptual biases requires users to have infor-
mation about the data provenance, the transformations that were performed during the analysis
pipeline, and uncertainties within the data. It is also important that the users are able to under-
stand the simplifications that are done when extracting a model of information from the data.
This need for guidance is especially noticeable when said users are not familiar with data anal-
ysis. Challenges also arise regarding user collaboration and the degree of interactivity offered
by Visual Analytics tools.

Design challenges. Designing Visual Analytics tools should take advantage of the exist-
ing knowledge from the domains of visual perception and cognition. Guidance to choose the
most suitable existing tools for a given task could also be helpful, as well as having available

19

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

test datasets, tools and results of evaluation studies. Although they note the difficulty of the
challenge, they also advocate the use of a unified architectural model for Visual Analytics ap-
plications.

Technological challenges. The duration of the analysis phase in a data exploration is
identified as a challenge, since it tends to be longer than traditional transactions due to the
added cost of processing and presenting the data to the analyst. To that end, D. Keim et
al. (2010) argue for the need for a “progressive availability” of the results that would give an
analyst a rapid overview of what can be expected, allowing her to steer the analysis in particular
directions. Another technological challenge is in the capacity to provide multi-scale analysis,
along with a methodology for providing basic interactions with data visualizations, such as
linking and brushing.

The disparities between Cook and Thomas (2005) and D. Keim et al. (2008)’s presentations
of Visual Analytics illustrate the different visions of Europe and the USA with regards to data
analysis. Regardless, the broad goals of Visual Analytics remained constant over the years,
as evidenced by the similarity between Cook and Thomas (2005)’s recommendations and D.
Keim et al. (2010)’s challenges. Visual Analytics aims at allowing one to explore data to extract
knowledge from it by offering tools allowing to, in the words of both Cook and Thomas (2005)
and D. Keim et al. (2010):

• Synthesize information and derive insight from massive, dynamic, ambiguous,
and often conflicting data

• Detect the expected and discover the unexpected

• Provide timely, defensible, and understandable assessments

• Communicate these assessments effectively for action.

(D. Keim et al. (2010), page 7)

1.3 The importance of insights

Visual Analytics as a paradigm is supposed to allow an analyst to gain insights from the data,
as stated in several ways over different works. Card, Mackinlay, and Shneiderman (1999) state
that “the purpose of visualization is insight”, and Cook and Thomas (2005) describe Visual
Analytics’s purpose as enabling and discovering insights. The term is widely used, even though
none of its existing definitions has been commonly accepted by the information visualization
community as a whole (Sacha et al., 2014; Yi, Stasko, & Jacko, 2008). Depending on the focus
of the work at hand, an insight can designate a particular moment when one makes sense
out of a piece of information, or the newly obtained knowledge from this moment (Chang,
Ziemkiewicz, Green, & Ribarsky, 2009). As such, an insight can be new information about

20

2.1. Visual Analytics

the content of the data, or an hypothesis based on the exploration, that will require further
investigation of its veracity.

1.4 Generating knowledge with Visual Analytics

The question of how analysts interact with a system to generate knowledge has been the focus
of several research works. A first step has been proposed by van Wijk (2005), in an attempt to
assess the value of visualization and how analysts use it to generate knowledge. In his article,
he proposes a general model for visualization that considers a visualization process that will
create a image from the combination of data and a specification. This image will then be subject
to the analyst’s perception, which will generate knowledge that can either feed the perception
process or lead to new hypotheses. These hypotheses can then lead to further exploration by
changing the specification before going back into this cycle with a new image. The initial model
was later augmented to denote the fact that perception is an important part of the exploration
process, and that exploration in itself feeds knowledge reasoning (T. M. Green, Ribarsky, &
Fisher, 2008; Tera Marie Green, Ribarsky, & Fisher, 2009). This whole process has later been
referred to by D. Keim et al. (2008) as the sense-making loop, illustrated in figure 2.1.

data visualization user

Hypotheses

Initial
AnalysisData

Specification

KnowledgeImageVisualization New
InsightPerception

Analyze
Further

Exploration
& Analysis

Figure 2.1: Sense-making loop (D. Keim et al., 2008). Boxes denote containers, while circles are
processes that produce an output from an input. The model originates from the works of van Wijk
(2005), T. M. Green, Ribarsky, and Fisher (2008) and Tera Marie Green, Ribarsky, and Fisher (2009).

Visual Analytics differ from the domain of data visualization in that an algorithmic process
takes place both before and after the visual exploration process. From this observation, D. A.
Keim, Mansmann, Schneidewind, and Ziegler (2006) extended the information seeking mantra
from Shneiderman (1996), “overview first, zoom and filter, details on demand”, to propose the
following Visual Analytics mantra:

21

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Analyse first –
Show the important –

Zoom, Filter and Analyse Further –
Details on demand

This mantra is similar to the one by Shneiderman, with the addition of the two “analyse”
steps that represent the addition of an algorithmic process. In accordance with this mantra,
D. A. Keim, Mansmann, Schneidewind, Thomas, and Ziegler (2008) proposed a model for the
Visual Analytics process, illustrated in figure 2.2. Their model include data transformations
that are performed during the pre-processing stage of the analysis, leading to data that can be
either visualized or fed to an algorithm to build a model from it. Following this first step, the
model created from the data can be visualized, and the insights gained from visual exploration
can be used to build a new model. By repeating these interactions, the analyst is then able to
generate knowledge, going back to the data transformations if needed.

Data

Visualisation

Models

Knowledge

Visual Data Exploration

Automated Data Analysis

User interaction

Mapping
Transformation

Model
building

Model
visualisation

Parameter
refinement

Data
mining

Feedback loop

Figure 2.2: Visual Analytics workflow (D. A. Keim, Mansmann, Schneidewind, Thomas, &
Ziegler, 2008). Representation from D. Keim, Kohlhammer, Ellis, and Mansmann (2010).

Building from D. Keim et al. (2008)’s model, Sacha et al. (2014) proposed a model of knowl-
edge generation in Visual Analytics, illustrated in figure 2.3. In their model, the focus is on
the actions a human analyst can make and which stage of D. Keim et al.’s model they impact,
rather than the connections between the stages. The preparation action refers to data gath-
ering and pre-processing. Model building and visual mapping actions respectively lead to the
creation of a model and visualization from the data, that the analyst can then explore (model
usage and manipulation actions). The model-vis mapping action represents actions that map
models into visualizations, as well as the opposite one (creating a model from a visualization).

22

2.1. Visual Analytics

Observations lead to findings, which represent any interesting information the analyst obtains
while working with the Visual Analytics system. They can lead to the generation of insights or
to the continuation of the exploration process.

Figure 2.3: Knowledge generation process in Visual Analytics (Sacha et al., 2014). Human ac-
tions are the blue arrows, which can lead to Visual Analytics components (filled arrows) or to the
mappings between them (dotted arrows). Red arrows represent the human cognition paths, when
generating findings by observing the system.

When describing their model, Sacha et al. draw a parallel with two other processes de-
scribed in the literature. The upper part (Data and Visualization) corresponds to the InfoVis
pipeline by Card et al. (1999), while the bottom part (Data and Model) corresponds to the
Knowledge Discovery in Databases process (KDD process, Fayyad, Piatetsky-Shapiro, and
Smyth (1996)).

1.5 Modeling the tasks performed with Visual Analytics

Conducting a data analysis is a lengthy process, composed of several steps that an analyst
repeats depending on her goals and on the task at hand. To obtain a better understanding of
what this process encompasses, several research works have tackled the problem of offering
a proper model for data analysis tasks. Here, we present a review of the literature on these
models, structured around their focus, be it what the analyst wants to achieve, what actions the
analyst performs to achieve their goal, or what data the analyst is working with. The following
categories present the models in chronological order. Since they can be quite different in
scope and design, the latter models do not necessarily build upon the earlier ones. A final
important thing to note is that the following models have not necessarily been proposed with

23

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Visual Analytics in mind. They are however general enough to be applied to this particular
context.

1.5.1 Visual Analytics task models focused on analysis goals

Amar and Stasko (2004) propose a high level categorization of analysis tasks composed of
two categories, the rationale-based and the worldview-based tasks. The former contains tasks
that aim at supporting complex decision-making, in particular when dealing with uncertainty,
and encompasses exposing uncertainty, concretizing relations and formulating cause and ef-
fect. The latter contains tasks that aim at supporting learning a domain, and encompasses
determining domain parameters, providing multi-level analysis of complex data and confirming
hypothesis.

Pirolli and Card (2005) propose a model of analyst’s sense making built around six states that
a dataset can be in, as illustrated in figure 2.4. In order of increasing structure, the first state
is called “external data sources”, and refers to the raw data. The “shoebox” is a subset of this
raw data, from which one can extract parts of the items to create an “evidence file”. “Schema”
is a re-structuration of this information that is more suited to obtain conclusions, which are then
supported with arguments to form the “hypotheses”. The final state is the “presentation” of the
knowledge gained from this process.

Figure 2.4: The model from Pirolli and Card (2005). Illustration by Pirolli and Card (2005).

24

2.1. Visual Analytics

Their task model consists of the ten actions one can perform to transition between two of
the aforementioned states. They propose a bottom-up process (from “external data sources” to
“presentation”) consisting of “search and filter”, “read and extract”, “schematize”, “build case”
then “tell story”, as well as a top-down process (from “presentation” to “external data sources”)
consisting of “reevaluate”, “search for support”, “search for evidence”, “search for relations” then
“search for information”. Although these two processes are distinguished, the authors note that
in practice, analysts use both in an opportunistic mix.

For Ward, Grinstein, and Keim (2010), analysis tasks form three high level categories. When
performing exploration tasks, analysts aim at formulating hypotheses, while confirmation tasks
consist of verifying these hypotheses. The third category, called presentation tasks, encom-
passes the work on data realized with the aim of communicating what has been found through
the other two types of tasks.

1.5.2 Task models focused on actions on data

MacEachren (1995) proposed a model composed of low-level tasks designed for temporal data,
in order to cover all the possible questions an analyst can ask herself during her work. He
provides the following list of questions, while noting that it is by no means exhaustive:

• Does a given element exist in the data?
• When does an element appear in the data?
• What time does an element span?
• Does an element present a given temporal pattern?
• What is the change frequency of an element?
• What is the sequence or order of appearance of some elements?
• Is there a synchronicity between elements?

Based on his mantra of “Overview first, zoom and filter, then details on demand”, Shneiderman
(1996) proposes to group visual information seeking tasks into the following seven categories:

• Overview tasks, that provide a global view of the data at hand
• Zoom tasks, to zoom on elements of interest
• Filter tasks, to reduce data to elements of interest
• Details on demand tasks, to obtain details on one or more elements
• Relating tasks, to visualize relations between elements
• History tasks, to navigate the history of actions performed during the analysis
• Extraction tasks, to obtain subparts of the data or parameters used

25

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Rather than using Shneiderman’s visualization mantra, Yi, ah Kang, Stasko, and Jacko (2007)
propose a classification of analysis tasks built from the intents of an analyst during her work.
Doing so, they identify seven categories of tasks:

• Selection tasks, where the analyst marks some element as interesting
• Exploration tasks, where the analyst changes her focus from some elements onto others
• Reconfiguration tasks, where the analyst changes the spatial arrangement of the data to

observe it under a different angle
• Encoding tasks, where the analyst changes the representations used
• Abstract/Elaborate tasks, where the analyst looks at the data with respectively less or

more details
• Filtering tasks, where the analyst observe data elements under certain conditions
• Connection tasks, where the analyst looks at the relations between elements

The authors note that their classification is not exhaustive, citing actions such as “undo/redo”
or “changing a system’s configuration”.

1.5.3 Task models focused on data

Andrienko and Andrienko (2006) propose a general high-level model designed to express the
tasks an analyst may perform on temporal data. Their model relies on a formal description of
the data to be explored, composed of two sets of elements: the referrers, which can be seen
as the dimensions of the data, and the attributes which contain the values found either directly
from the data or derived from it. By specifying the values of the referrers, one can obtain the
associated attributes’ values through what can be seen as a function from the domain of the
referrers to the domain of the attributes. Similarly, one can perform the inverse operation by
specifying the values of some attributes to retrieve the associated referrers’ values.

Based on this data model, Andrienko and Andrienko identify 11 task categories, as illus-
trated in figure 2.5. Elementary tasks refer to tasks targeting a single data element, or a set of
element where each one is considered individually. They oppose these tasks to the synoptic
tasks, which target sets of data elements that are considered as a whole. In both categories,
the lookup and comparison tasks can be either direct or inverse, the difference between these
notions being in the subject of the task. Direct tasks specify the referrers’ values to look for
the associated attribute values, while inverse tasks specify the attribute values in order to find
the associated referrers’ values. While this is only an overview of their model, more details are
provided in section 5.1.

26

2.1. Visual Analytics

Visualization tasks

Elementary tasks
(on values)

Synoptic tasks
(on sets)

Lookup Comparison Relation Seeking Descriptive tasks Connectional tasks

Lookup Comparison Relation SeekingDirect Inverse

InverseDirect
Homogeneous

behavior

Heterogeneous
behavior

Figure 2.5: The task model from Andrienko and Andrienko (2006). Illustration inspired by Aigner,
Miksch, Schumann, and Tominski (2011).

1.6 Examples of existing Visual Analytics tools

Visual Analytics has been applied to a number of domains, data and use cases. Offering a de-
tailed review of existing Visual Analytics systems would be too long, and is not part of the scope
of our works. As such, while far from exhaustive, the following list aims at offering an overview
of the variety in existing Visual Analytics systems, in terms of algorithmic techniques used and
of visualizations offered. No other criterion has been taken into account when choosing which
systems would be included.

1.6.1 Interactive Parallel Bar Charts (Chittaro, Combi, & Trapasso, 2003)

Interactive Parallel Bar Charts (IPBC) allows the exploration and comparison of a collection of
time-series, initially designed to explore medical data. It is illustrated in figure 2.6.

Visualization – A bar chart representation of the time-series is provided. It can be switched
between 2D and 3D, and supports the flattening of subparts of the chart to avoid occlusion prob-
lems in 3D mode. Color is used to highlight query results, and water is displayed to represent
a user-specified threshold, highlighting the emerged bars.

Interactions – The analyst can switch between different modes to explore, transform and
manipulate the bar chart. She can also aggregate the data by specifying the duration repre-
sented in a bar. The analyst can specify range of values of interest, to formulate a query in the
chart, or specify a threshold to highlight the data points above it. A pattern matching can also
be requested with an SQL-like syntax.

Algorithms – Algorithms in IPBC support the construction of the bar chart from the initial
data, as well as providing results for the user queries. Additional interactivity is provided by the
ability to manipulate the display, by rotating and translating the visualization.

27

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Figure 2.6: Interactive Parallel Bar Charts (Chittaro, Combi, & Trapasso, 2003).

1.6.2 VizTree (Lin, Keogh, Lonardi, Lankford, & Nystrom, 2004)

With VizTree, Lin et al. provide a system to visually explore time series in order to discover
underlying patterns. The system was designed to address some challenges faced by the US
Department of Defense when launching space vehicles, by allowing to simultaneously visualize
the global and local structures of the data. VizTree allows one to discover frequent patterns,
perform anomaly detection and query specific content within the explored data. It is illustrated
in figure 2.7.

Visualization – The time series are equally divided in a number of sub-sequences, as
is the range of the values present in the series. A letter refers to each value-range, and
sub-sequences are then mapped to the letter representative of their mean value, thus form-
ing a string representation of the time-series. A tree representation aggregates all the string-
sequences, with the width of a branch representing the frequency of the corresponding pattern
in the data. Each level of the tree is a segment of the original sequence. All possible combina-
tions are displayed, even if they are not found in the data. Color is used to distinguished found
patterns (red branches) from possible ones (grey branches). When a node is selected by the
analyst, its sub-tree is displayed on the right, along with the corresponding sub-series, that are
also highlighted in the top view of the whole time-series. When selecting two nodes, a diff-tree
is displayed, showing the differences between them. These differences are also highlighted in
the top view.

28

2.1. Visual Analytics

Figure 2.7: VizTree (Lin, Keogh, Lonardi, Lankford, & Nystrom, 2004).

Interactions – The analyst can select a node in the tree to zoom-in on sub-trees of interest
and highlight them in the visualization. Two nodes can be selected to compare their differences.
A few parameters are available, to select the number of sub-sequences and the number of value
categories to create the string representations.

Algorithms – Besides converting the initial time-series to a string, algorithmic tools al-
low the retrieval of sub-sequences in the original time-series, and the comparison of two sub-
sequences.

1.6.3 Lifelines2 (Wang et al., 2009)

LifeLines2 allows one to explore temporal categorical data, namely medical records of patients.
The focus is on exploring and comparing multiple patient records at the same time, as opposed
to its predecessor LifeLines (Plaisant et al., 1998) that was targeting a single record at a time.
It is illustrated in figure 2.8.

Visualization – The visualization provided is a timeline-based representation of the medical
records occupying most of the interface. It allows the analyst to visually compare side-by-side
records to look for patterns or singularities in the data. A temporal summary of the data is
also provided, where the analyst can decide which criterion is used for the summary (events,
records, events per record). A comparison view is available, to display bar charts highlighting
the differences between different records.

Interactions – The analyst can select events that will be used to align the different records

29

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Figure 2.8: LifeLines2 (Wang et al., 2009).

in varying ways (nth occurrence from the start or the end, or on occurrences of the same event).
The system support searching for a target event type, and the records can be split into sub-
records if needed. A time-interval can be selected by dragging over a visualization, which will
automatically focus the other ones on the selected period. Additionally, the event types can be
ranked and filtered, and various options are provided to tweak the records’ display.

Algorithms – The algorithms provided deal with the presentation of the data, to filter it,
compare selected records, build temporal distributions and adapt the visualization to the ana-
lyst’s needs.

As noted at the start of this subsection, these few examples of existing Visual Analytics sys-
tems are far from exhaustive. They however illustrate how Visual Analytics as a data analysis
paradigm has been applied to a wide range of tasks, using a variety of visualization and al-
gorithmic techniques. As a result, the role of the algorithms involved varies from one system
to another, which raises the question of how much of the analysis process should still be per-
formed by the human analyst.

1.7 Degree of automation in Visual Analytics systems

By definition, Visual Analytics systems provide both data visualization and algorithmic pro-
cesses to assist an analyst. However, the balance between these two components is not spec-

30

2.1. Visual Analytics

ified, and varies greatly from system to system. This subsection presents existing works that
have studied the importance of both visualization and algorithms in existing Visual Analytics
applications.

While Visual Analytics is at the intersection of Automatic Analysis and Visualization, D. A.
Keim, Mansmann, and Thomas (2010) argue that Visual Analytics is not always a good solution
for all problems from these domains. In the absence of a clear way to tell if a given problem
should be handled with Visual Analytics tools, they propose a theoretical representation of
the potential of Visual Analytics, as illustrated in figure 2.9. They conclude by stressing the
interest of “[developing] methods for determining the optimal combination of visualization and
automated analysis methods to solve different classes of problems by taking into consideration
the user, the task and the characteristics of the data sets”.

Figure 2.9: Potential of Visual Analytics (D. A. Keim, Mansmann, & Thomas, 2010).

The same year, Bertini and Lalanne (2010) proposed a review of 48 Visual Analytics sys-
tems, in which they identify three groups of systems:

• The Computationally enhanced Visualizations (V++), relying mostly of visualizations but
supported by algorithmic processes

• The Visually enhanced Mining systems (M++), relying mostly on algorithmic processing
but offering some visualization capabilities to deal with the results of the algorithm

• The Integrated Visualization and Mining systems (VM), where the balance of visualization
and algorithmic processes does not allow one to evidence a clear dominance of one or
the other.

Bertini and Lalanne conclude from their review that “the most interesting and promising
direction for future research is to achieve a full mixed-initiative KDD process where the human
and the machine cooperate at the same level”. This paints VM systems as the most desirable
category, even though it is the least populated (8 systems among 48). When studying the other

31

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

two categories, they observe that both use algorithms at the early stage of the analysis, while
visualization is present in the final stages.

From their review of existing systems, they suggest several ways in which V++ and M++
systems could be improved, to bridge the gap towards the VM category. With regards to V++
systems, they first suggest the idea of Visual Model Building, in that visualizations (and the
ways in which the user interacts with it) can be used as input for a model-building algorithm.
Their second suggestion is to use algorithmic techniques to verify and refine patterns found
in the data visualizations, in order to replicate the practice of communicating a level of trust-
worthiness of the extracted knowledge, common in automatic data mining. Finally, their last
suggestion for V++ systems is to provide tools to deal with tasks of predictive modeling, that
are usually not addressed by information visualization tools. With regards to M++ systems,
their first suggestion is that they should leverage visualization to offer better representations of
the parameter space of the algorithmic processes, and of the alternatives that different param-
eter values can offer. Their second suggestion is that visualization should be used as a way to
bridge the semantic gap that can exist between the original data and the models that are built
from them.

While they deliberately leave systems fully dedicated to either data visualization or algorithmic
processing out of their study, one could easily extend their work to such systems. This would
provide a categorization of existing systems as done in figure 2.10, with an axis having at one
end Data visualization, with no algorithm besides the one responsible for building the visualiza-
tion. An illustration could be the Perspective Wall visualization, by Mackinlay, Robertson, and
Card (1991). At the other end is Algorithmic processing, with no visualization to support the
exploration of the algorithm’s result. An illustration could be the R language and environment,
which provides text outputs after an analysis. In the middle, we can find Visual Analytics sys-
tems from Bertini and Lalanne’s VM category, while the other categories are on the left and
right side of the axis. A system’s distance from the center will depend on its balance between
visualization and algorithmic capabilities.

Data
visualization

Algorithmic
processing

VM
systems

M++
systems

V++
systems

Figure 2.10: Visual representation of the categories from Bertini and Lalanne (2010). We added
two categories fully dedicated to either visualization or algorithmic processing. The systems pre-
sented in the previous subsection have been placed on this axis. The position of a system on the
axis provides a broad estimate of its features.

32

2.2. Progressive Visual Analytics

1.8 Towards Progressive Visual Analytics

Despite the advantages it offers, Visual Analytics is limited in that the analyst needs to have the
visualization ready before he can explore the underlying data. As explained in the technological
challenges for Visual Analytics by D. Keim et al. (2010), when dealing with large dataset or
using time-consuming algorithms, the visualization might not be immediately available, which
forces the analyst to wait before starting her work. This is obviously problematic in the case
of long waiting time (hours or more), but even small delays of a few seconds can harm the
analysis process if encountered repeatedly. In some cases, this can be solved by providing
more memory or processing power to run the Visual Analytics system, but other paradigms
have been suggested to tackle this challenge, such as Progressive Visual Analytics.

2 Progressive Visual Analytics

This section presents the paradigm of Progressive Visual Analytics, which brings an alterna-
tive to the aforementioned limitations of Visual Analytics. After a chronological presentation of
the evolution of Progressive Visual Analytics’ definition and its difference with closely related
domains, we present some examples of existing Progressive Visual Analytics systems. A pre-
sentation of the works that have studied the design of such systems follows, before concluding
the chapter.

2.1 Definition and origin of the progressive paradigm

Stolper et al. (2014) first defined Progressive Visual Analytics as follows:

Methods to avoid [...] speed bumps, where analysts can begin making decisions
immediately [by] visualizing partial results [that] provide early, meaningful clues [...]
without waiting for long-running analytics to terminate.

This definition stems from existing work, notably in the domains of incremental visualization
(Angelini & Santucci, 2013; Fisher, Popov, Drucker, & schraefel m.c., 2012) and dynamic vi-
sualization (E. G. Hetzler, Crow, Payne, & Turner, 2005). Stolper et al. aimed at unifying and
extending these domains to offer an alternative to what they call batch Visual Analytics, where
analysts need to wait for the end of a computation before visualizing the results (figure 2.11,
top). They argue that having intermediate results allows an analyst to detect and cancel an
analysis that is unlikely to generate interesting results, thus limiting wasting analysis and com-
putation time. In addition, having partial results allows the analyst to start exploring the data
right from the start, thus reducing or even eliminating any waiting time (figure 2.11, bottom).

33

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Select
Dataset

Select
Analytic

Parameters
Run Analytic Visualize

Results
Interpret
Results

Visualize
Partial
Results

Interpret
Partial
Results

Wait for
Analytic to
Complete

Select
Dataset

Select
Analytic

Parameters
Run Analytic

Visualize
Complete
Results

Interpret
Complete
Results

Figure 2.11: Batch Visual Analytics (top) vs Progressive Visual Analytics (bottom) (Stolper,
Perer, & Gotz, 2014).

Along with the previous definition, Stolper et al. provide a list of 7 design goals for Progres-
sive Visual Analytics systems:

• Design analytics component to:

1. Provide increasingly meaningful partial results as the algorithm executes
2. Allow users to focus the algorithm to subspaces of interest
3. Allow users to ignore irrelevant subspaces

• Design visualizations to:

4. Minimize distractions by not changing views excessively
5. Provide cues to indicate where new results have been found by analytics
6. Support an on-demand refresh when analysts are ready to explore the latest results
7. Provide an interface for users to specify where analytics should focus, as well as the

portions of the problem space that should be ignored

Though Stolper et al.’s definition was the first to provide a precise definition and a name
for the principles behind Progressive Visual Analytics, some work predates this definition while
complying with it. Most importantly, in their technological challenges for Visual Analytics, D.
Keim et al. (2010) write the following:

One [challenge] is in relation to the duration of the analysis phase, which tends
to be much longer than traditional transactions dealt with by a standard database
management system. Therefore, methods are required not only to support long
commit phases, but also to furnish partial results from the analysis. Providing this

34

2.2. Progressive Visual Analytics

“progressive analysis” would give the analyst a rapid overview and hence, a basis
for steering the analysis in a particular direction, from which details could be sought .
(D. Keim et al. (2010), page 147)

Implementations complying with Stolper et al.’s design goals can also be found predating
their definition of Progressive Visual Analytics, such as Williams and Munzner (2004)’s Pro-
gressive MDS. This will be presented in more detail in subsection 2.2.3.

With regards to the notion of “progressive algorithms”, none of the previously mentioned
publications on Progressive Visual Analytics provide a clear and explicit definition. As such, the
implicit definition of a progressive algorithm seems to be “an algorithm that complies with the
concepts of Progressive Visual Analytics ”; i.e. that provides intermediate results of increasing
quality, while allowing the analyst to interact with its execution.

While these articles focus on the benefits of Progressive Visual Analytics, some work have
been focused on highlighting the risks that the progressive paradigm might carry. Angelini and
Santucci (2017) in particular stress that the important role played by partial results needs to be
taken into account to prevent analysts to misinterpret an Progressive Visual Analytics system’s
output.

On October 2018, Progressive Visual Analytics was the focus of the Dagstuhl Seminar 18411,
entitled “Progressive Data Analysis and Visualization”. Its focus was on bringing together re-
searchers from the database, visualization and machine learning communities, in order to dis-
cuss the challenges associated with the notion of progressiveness, that each of these commu-
nities had started to address in their own terms. The seminar’s report (Fekete, Fisher, Nandi,
& Sedlmair, 2019) as well as the articles that stem from it (Micallef et al., 2019; Turkay et al.,
2018) are discussed in our conclusion (chapter 8) rather than here.

2.2 Progressive algorithms compared to related algorithm types

Due to their goal of offering an answer to waiting times imposed to the analyst by an algorithmic
computation, it might seem relevant to assimilate progressive algorithms to other types of algo-
rithms having a similar aim, such as anytime, online or incremental algorithms. This subsection
is focused on how progressive algorithms are in fact different from these, and should not be
confused with them (Fekete et al., 2019; Fekete & Primet, 2016).

35

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

2.2.1 Progressive versus anytime algorithms

Anytime algorithms (Dean & Boddy, 1988) can be described as algorithms that enable the
trading of result precision for computation time. This is achieved through four aspects:

• Allow the output of a result upon interruption of the execution at any time;

• Provide results whose quality can be measured;

• The more processing time, the better the results;

• Predictability of the results quality, given then data and the allowed computation time.

From this, we can see that anytime algorithms differ from progressive ones in that they
need to be interrupted to provide their result. Later, Zilberstein (1996) proposed that anytime
algorithms could regularly output results during their execution, by regularly pausing the com-
putation process. Based on the current output, the analyst could then choose between three
options: 1/ resume until the next pause, 2/ resume until completion of the computation, and 3/
terminate the computation. However, the effectiveness of this proposition relies on the ability to
pause and resume the computation with reduced overhead.

2.2.2 Progressive versus online algorithms

Online algorithms are algorithms that need to produce an output to answer requests using input
data that is not entirely available at the time of their execution (Albers (2003), Borodin and El-
Yaniv (2005) (Preface)). Since future input may be relevant to the current computation, this
means that online algorithms must work with incomplete knowledge.

Should an online algorithm be ran several times to perform the same request, one could
consider the earlier output to be intermediate results for the subsequent ones. From this, we
can see that online and progressive algorithms both output intermediate results. However,
online algorithms do not provide any interaction with their process, while providing a different
result from what a non-online algorithm performing the same task would provide. Another
difference between the two is that rerunning an online algorithm brings additional data to be
processed, while progressive algorithms are supposed to work on the entirety of a dataset right
from the start.

2.2.3 Progressive versus incremental algorithms

Incremental algorithms are a family of algorithms designed to process large datasets by chunks
of increasing size. While each chunk includes the previous one, the algorithm only processes
the new data. The output is then combined with the information extracted from the previous

36

2.2. Progressive Visual Analytics

chunk, and the next increment can occur. Even though these algorithms inspired Stolper et al.
(2014) for their definition of Progressive Visual Analytics, and can be a basis for a progressive
algorithm, they are not inherently progressive in nature. The main reason for this distinction is
that processing the data in chunk does not imply that feedback is provided before the end of
the process, or that interacting with the process is possible.

2.3 Existing implementations of Progressive Visual Analytics systems

Even though the paradigm of Progressive Visual Analytics is still young, a few implementations
have been proposed in the literature. They vary in the way they approach Progressive Visual
Analytics and in the use case they address, but offer a basis future systems will be able to
build upon. As we will see in this subsection, these Progressive Visual Analytics systems all
propose visualizations that present the analyst with what is essentially incremental visualization
of results as they are being built. Interactions in this case are classical, such as zooming,
filtering, ordering, highlighting, etc. Additional control may be available, such as tuning density
map’s rendering parameters (Pezzotti et al., 2017; Schulz, Angelini, Santucci, & Schumann,
2016) or altering the visualization’s evolution speed (Badam, Elmqvist, & Fekete, 2017; Schulz
et al., 2016). Some systems go further by proposing interactions between the analyst and the
running algorithm. In addition to the following systems, one can also mention Fekete (2015)’s
ProgressiVis, a python toolkit that can be used to implement progressive algorithms.

2.3.1 MDSteer (Williams & Munzner, 2004)

Williams and Munzner propose MDSteer, a steerable system that allows the user to progres-
sively guide the MDS layout process. Multidimensional Scaling (MDS) is a general term that
refers to any approach that attempts to represent multi-dimensional data in a lower dimension
space while preserving inter-point distance as best as possible. A common application of such
technique is to project N -dimensional data (N > 2) into a 2-dimensional space, which enables
a scatterplot representation of the data. MDSteer is illustrated in figure 2.12.

Visualization – The visualization in MDSteer consists of the scatterplot representation of
the data points’ projection in the low-dimensional space. During the computation, the 2D space
is divided in several regions (boxes in figure 2.12). The color of a region’s outline indicates
whether all of the data points that are likely to be projected into it are displayed (black) or not
(red).

Algorithmic processes – The only algorithm involved is Progressive MDS, which alter-
nates between two phases. The binning phase involves dividing the low-dimensional space
into regions and associating them to the data points they contain. The layout phase adds a
number of points to the low-dimension space and updates the representation. The binning
phase is triggered after a number of layouts have been performed.

37

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Figure 2.12: Progressive MDS (Williams & Munzner, 2004).

Interaction with the algorithm – The analyst is able to interact with Progressive MDS by
selecting regions of the low-dimension space. This impacts the selection of random points
that will be added to the representation during the next layout phase, ensuring that it selects
points that are likely to be projected into the selected regions (based on their high-dimensional
similarity with already placed points).

2.3.2 Progressive Insights (Stolper et al., 2014)

Stolper et al. implemented a system for the exploration of medical data using sequential pattern
mining, built around a progressive version of an existing algorithm. Their system displays the
patterns both in a hierarchical list and in graphical representations that the analyst can interact
with. Progressive Insights is illustrated in figure 2.13.

Visualization – Progressive Insights’ interface offers three main data visualization views.
First, a list view of the top patterns, according to several ranking measures. Two instances of
this view are present, allowing the analyst to compare different ranking measures (C in figure
2.13). On the left side, each pattern in the list is paired with a bar of the selected measure’s
histogram. A mini-map of the complete pattern list is provided on the right. In order to reduce
visual noise, newly discovered patterns are not added to the list, but are instead represented as
purple horizontal marks within the list. These can be clicked to update the list, and are reflected
on the mini-map.

The second view is a scatterplot (A in figure 2.13) whose axes are the two metrics selected
in the previously described list views. The top-n patterns according to a third user-selected
metric are represented using orange dots. When a pattern is selected by a click (either in the

38

2.2. Progressive Visual Analytics

Figure 2.13: Progressive Insights (Stolper, Perer, & Gotz, 2014).

lists or in the scatter plot), its prefixes and the pattern itself are highlighted in blue. The analyst
can then observe the pattern-to-prefix relationship within the current metric space by displaying
a black line that connects the selected pattern to its ancestors. Rather than abruptly removing
the points associated to pattern that fall out of the top-n, these are progressively transitioned
to smaller, white-filled dots. A “Clear” button is available in the top-left, should the analyst
want to get rid of these. In addition to the scatterplot for the top patterns, the entirety of the
mining output is displayed in the background using a heat map of the pattern density within the
metric space. Cells of the heat map can be hovered over to see detailed information about their
content, and double-clicking a cell adds its content to the scatterplot, in addition to the top-n
patterns.

The last view is a tree view (B in figure 2.13), which provides a collapsible hierarchical view
of the patterns. It allows analysts to direct the ongoing computation, by steering towards specific
pattern prefixes or by marking some patterns as undesirable, thus preventing the search for
patterns that extend them. Similarly to the list view, a bar chart is displayed on the left of the
list, representing the ordering according to a user-selected metric.

All three views are linked, allowing the analyst to select a pattern in any view to highlight it

39

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

in all of them.
Algorithmic processes – The progressive algorithm in Progressive Insights is adapted

from the SPAM algorithm (Ayres, Flannick, Gehrke, & Yiu, 2002), and outputs frequent patterns
as soon as they are discovered. Their modifications to SPAM include making the algorithm
use a breadth-first search strategy (see subsection 3.2.1), effectively prioritizing the shorter
patterns in the first steps of the computation.

Interaction with the algorithm – During the algorithm computation, the analyst is able to
specify (by clicking in the pattern list on the right) that a given pattern should be prioritized. This
forces the algorithm to look for new frequent patterns having the selected pattern as prefix. In
the same way, a pattern can be forbidden, preventing the search of new patterns having it as a
prefix. Either during or after the computation, the analyst can restart the algorithm over a subset
of the data, or with different parameter values, the system keeping a record of the previously
selected sets of parameters.

2.3.3 Similarity search (Schulz et al., 2016)

Schulz et al. propose a system for similarity search in large datasets, illustrated in their article
with a dataset containing all car crashes in the USA between 2001 and 2009. They use an
algorithm that incrementally finds the data points similar to a target point defined by the analyst.
Their system is illustrated in figure 2.14.

Figure 2.14: Similarity search (Schulz, Angelini, Santucci, & Schumann, 2016).

Visualization – The main visualization is a geospatial representation of the data points
output by the algorithm. This visualization is incrementally updated as the algorithm discovers
results. Representations of the process from data to visual representation are displayed on the
side to provide insights about the data processing pipeline. The top part of the interface offers

40

2.2. Progressive Visual Analytics

sliders for the attributes that can be used to define the search target, as well as controls over
the computation (pause, resume, restart. . .).

Algorithmic processes – The algorithm takes a target defined by a set of attributes, al-
lowing one to describe a configuration that may not be present in the data, and searches for
similar data points. This is done by iteratively selecting a sample of the unexplored data, and
displaying the data points that are similar to the given target.

Interaction with the algorithm – The analyst can change the search target, and can pause,
resume and stop the algorithm during its execution, as well as restart the procedure with new
parameters.

2.3.4 PIVE (Kim et al., 2017)

PIVE (Per-Iteration Visualization Environment) is a system designed to work with algorithmic
processes that iteratively refine their output. By displaying the output of each iteration, the
system allows one to perform visual data exploration while interacting with the running process.
PIVE is described as a generic platform able to adapt to various algorithms, that Kim et al.
illustrate with dimension-reduction and clustering techniques. PIVE is illustrated in figure 2.15.

Figure 2.15: PIVE (Kim et al., 2017).

41

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Visualization – While the visualization offered could vary depending on the algorithmic
technique in use, there should be a visual display of an iteration’s output. In the illustrations
provided by the authors it consists of a 2D scatterplot, generated by dimension reduction and
clustering. Over successive iterations, the display is updated to reflect the most up to date
results.

Algorithmic processes – In their article, Kim et al. use several dimension reduction al-
gorithms (t-distributed stochastic neighborhood embedding (tSNE), multidimensional scaling
(MDS)) and clustering techniques (k-means, latent Dirichlet allocation). The algorithms are
modified to output the result of each of iteration and allow the analyst to interact with the out-
puts.

Interaction with the algorithm – The analyst can manually alter MDS and t-SNE algo-
rithms’ outputs (i.e. change the position of points in the low-dimensional space), either perma-
nently or temporarily, to guide the remaining computation until convergence is reached. Merg-
ing or splitting selected k-means clusters permanently or temporarily is also possible, which
again provides guidance for the system.

2.3.5 Approximated tSNE (Pezzotti et al., 2017)

Pezzotti et al. (2017) propose a system built around their progressive adaptation of the tSNE
algorithm. Their system is focused on the visual analysis of high-dimensional data, with the
ability for the analyst to interact with the computation.

Figure 2.16: Pezzotti et al. (2017)’s system.

Visualization – Pezzotti et al.’s system provides several linked views to the analyst, ar-
ranged in two rows. The top one shows (from left to right) the intermediate output (the data

42

2.2. Progressive Visual Analytics

embedding), the original (high-dimensional) data and the algorithm’s progression (refinement).
The bottom row provides controls over (from left to right) the intermediate data generation, the
intermediate data visualization, the data manipulation and the algorithmic process. The analyst
can select parts of the embedding, which are highlighted in the high-dimensional representation
(orange areas in figure 2.16).

Algorithmic processes – Pezzotti et al. present a progressive version of t-SNE called
Approximated-tSNE (A-tSNE). This algorithm approximates the computation of high-dimensional
similarities, providing intermediate output as the approximation’s precision increases. The cost
function of this output is then minimized using a gradient descent, which provides an approxi-
mated embedding of the high-dimensional data.

Interaction with the algorithm – Analysts can select a region in the low-dimensional space
to decrease the approximation level for the corresponding data points, thus increasing repre-
sentation precision. They can also add, modify or remove data points on the fly. If they add or
remove data attributes, then the algorithm is restarted. In the lower-right section of the inter-
face, three strategies are provided to steer the computation of the embedding. User selection
prioritizes the data points selected by the analyst. Breadth first processes the data points based
on their neighborhoods (i.e. prioritizing data points close to already processed ones). Density
based prioritizes data points that are present in the least dense regions of the data.

2.3.6 InsightsFeed (Badam et al., 2017)

Badam et al. propose a system for the exploration of Twitter data, supporting sentiment ex-
traction from the tweets. Their algorithm is not progressive in itself, but the way it is used in
combination with an incremental visualization allows them to simulate the kind of interaction
possible between a progressive system and an analyst. InsightsFeed is illustrated in figure
2.17.

Visualization – Besides a list of all the tweets, three visualizations are provided. The first
one is a vertical bar chart displaying the ratio between negative, neutral and positive sentiments
in the data. The second one is a horizontal bar chart indicating the popularity of the users in the
dataset (in number of tweets). The third and main visualization is a 2-dimensional projection of
the tweets, coming from the t-SNE projection algorithm (van der Maaten & Hinton, 2008) using
a semantic similarity measure of the tweets’ content. The tweets are aggregated into clusters
using the k-means algorithm, and the main keywords that define each cluster are displayed
over the map. For each visualization, and also for the global process, a progression indicator
is available, indicating how many tweets have been analyzed to create the currently visible
representation.

Algorithmic processes – Successive runs of t-SNE and k-means algorithms are performed
over increasingly larger subsets of the data. Each run starts with sentiment extraction from the

43

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Figure 2.17: InsightsFeed (Badam, Elmqvist, & Fekete, 2017).

tweets’ content, before updating the user popularity and updating the t-SNE and clustering.

Interaction with the algorithm – The analyst is able to interact with the algorithm by chang-
ing various parameters in each visualization, such as the number of clusters or the number of
tweets processed in each step. The new values for the parameters will be taken into account
for the subsequent runs of the algorithm. At any moment, the analyst can select a region of the
heat map with a click, which pauses the update of the entire interface to allow the analyst to
explore the data without updates getting in the way. A “play” button is then available to resume
the update.

Even though these systems offer very different ways of interacting with their respective algo-
rithms, let us remark that the authors systematically use the expression “steering the algorithm”
(or “steering the computation” for Badam et al. (2017)) to describe some of the interactions they
propose. This expression then simultaneously means prioritizing parts of the data (Pezzotti et
al., 2017; Williams & Munzner, 2004), prioritizing parts of the results (Stolper et al., 2014),
changing parameter values (Badam et al., 2017) and altering the results (Kim et al., 2017).
Badam et al. (2017) already identified such semantic variety, stating that “[steering] encom-
passes multiple types of operations, from filtering data if the analyst wants to focus on specific
values, to tuning algorithm parameters and behavior dynamically”.

2.4 Designing Progressive Visual Analytics systems

This subsection focuses on the existing work about designing efficient Progressive Visual Ana-
lytics systems. We start by reviewing the literature on interaction with algorithms, which has not

44

2.2. Progressive Visual Analytics

always been proposed with Progressive Visual Analytics in mind. The second part is dedicated
to the various works having proposed requirements for the design of Progressive Visual Ana-
lytics systems, usually encompassing both the algorithm, the visualization and the interactions
between the two.

2.4.1 Involving the user in the algorithmic process

Mühlbacher, Piringer, Gratzl, Sedlmair, and Streit (2014) presented four strategies to increase
user involvement with algorithms in general. Their work was not focused on Progressive Visual
Analytics, but the proposed strategies and the associated algorithm requirements are useful to
design PVA systems and define adequate algorithms.

Strategy S1: Data subsetting. Illustrated in figure 2.18, this strategy involves repeatedly
running the algorithm over increasingly large subsets of the initial data. It has the advantage
of not requiring any knowledge of the inner workings of the algorithm, and offers interaction
opportunities to the analyst between each run. However, this strategy necessitates that the
data can be sampled efficiently to provide meaningful results at the early steps of the process.
If the data subsets are processed in parallel, this approach produces significant overhead with
regards to memory and computational power. However, given sufficient resources, this can
bring the final result in the same order of time than the default case, with an increased user
involvement during the process. Badam et al. (2017) have used this strategy to simulate a
progressive system using a non-progressive algorithm, as described in the previous subsection.

P(D)D1 D2 D3

Data D Algorithm P Result rP

P(D1)D1

D2

D3 = D

S1 P(D2)

P(D3)

r1̃P

r2̃P

rP

Figure 2.18: Strategy S1: Data subsetting (Mühlbacher, Piringer, Gratzl, Sedlmair, & Streit,
2014). The complete data D is divided in increasingly larger chunks D1, D2 and D3, that are pro-
cessed by the unmodified algorithm P . The user can interact with the process once each chunk has
been processed. The final chunk corresponds to the original data.

Strategy S2: Complexity selection. Illustrated in figure 2.19, this strategy involves running
the algorithm with different parameter sets of varying complexity over the whole data. This
approach is only applicable to algorithms that support a trade-off between result quality and
execution time. Similarly to strategy 1, the executions are independent and can be run in

45

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

parallel at the cost of some overhead.

Input Algorithm P Result rP

S2 P2

r1̃P

r2̃P

rP

P

P

P1

Figure 2.19: Strategy S2: Complexity selection (Mühlbacher, Piringer, Gratzl, Sedlmair, & Streit,
2014). The data D is processed by several algorithms P1, P2 and P3 of increasing complexity
(represented by their number of vertices), derived from the original P algorithm. The final algorithm
corresponds to the original one.

Strategy S3: Divide and combine. Illustrated in figure 2.20, this strategy involves a process
where some workload has to be carried out by an algorithm. This workload needs to be divisible
into parts, either by dividing the data or the parameter space of the algorithm (e.g. dividing
a range of values). The algorithm then produces a result for each part, before combining
them into the final result. The strategy suggests that the parts are performed by separate
runs of the algorithm (either sequentially or in parallel), before being presented to the user
(independently or as a combination of several parts) to provide intermediate feedback and
allow user involvement during the process.

P(W)

Workload W Algorithm P Result rP

P(W1)

S3 P(W2)

P(W3)

w2
w3

w1
C

rP(wk) w1

w2

w3

r1̃P

r2̃P

rP

rP(w1)

rP(w2)

rP(w3)

C

Figure 2.20: Strategy S3: Divide and combine (Mühlbacher, Piringer, Gratzl, Sedlmair, & Streit,
2014). The workflow W is split in several wi sub-workflows that are processed in parallel by the
unmodified algorithm. Their outcomes are combined as soon as available, allowing interaction with
the combination result, even if all sub-workflows are not yet complete.

Strategy S4: Dependent subdivision. Illustrated in figure 2.21, this strategy consists of di-
viding an algorithm in a series of steps, each step taking as input the output of the previous
one, allowing user involvement between each step. Compared to the first two strategies, no
redundant computation is necessary, since the steps take into account the previous ones.
Mühlbacher et al. remark that while this strategy is applicable to all iterative algorithms, it is
also relevant for sequential processing of an ordered domain, for example signal processing.

46

2.2. Progressive Visual Analytics

In such case, the steps divide the data domain rather than the processing logic.

Input Algorithm P Result rP

S4 P

r1̃P

r2̃P

rP

P

P

P

r1̃P

r2̃P

Figure 2.21: Strategy S4: Dependent subdivision (Mühlbacher, Piringer, Gratzl, Sedlmair, &
Streit, 2014). The initial algorithm is broken into several steps that run in sequence, each taking as
input the output of the preceding one. Interaction happens at the end of each step, where the partial
result is provided to the user.

Although not a strict implementation of this strategy, existing work from Fekete and Primet
(2016) can be seen as a modified version of it. Taking the “Visual” out of Progressive Visual
Analytics, they explore the idea of “Progressive Analytics” to provide a formal definition of the
term “progressive”. To the classical notion of a function, they oppose the notion of a progressive
function. Both require as input a machine state, some parameters and data tables, but the
progressive function additionally requires a quantum. This quantum represents the amount
of time available to the function, at the end of which a result has to be provided. Through
successive executions, these (partial) results converge towards the final result. This differs
from Mühlbacher et al.’s S4 strategy in that the execution P provides its rP̃n

output when its
quantum is exhausted, whether the task is completed or not.

2.4.2 Types of user involvement

Mühlbacher et al. (2014) propose to classify the ways in which the user of an interactive vi-
sualization can be involved in the underlying algorithmic computation, by considering two or-
thogonal dimensions. The first is the direction of information, which represents whether the
information is passed from the computation to the user (feedback) or the other way round (con-
trol). The second dimension is the entity of interest, which can either be the execution of the
process or its result (final or intermediate). Using the Cartesian product of these two dimen-
sions, Mühlbacher et al. identify four types of user involvement: Execution Feedback, Result
Feedback, Execution Control and Result Control (figure 2.22).

When considering these types of user involvement, their focus was to identify elements
that could improve the user’s exploration experience, either through information visualization
(feedback in figure 2.22) or by giving the user additional power over the process (control in
figure 2.22). They remain algorithm-agnostic in their discussion, but clearly state that the use-
fulness and difficulty of implementing their various propositions might vary depending on the
algorithmic process at hand.

47

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Figure 2.22: Types of User Involvement (Mühlbacher, Piringer, Gratzl, Sedlmair, & Streit, 2014).

2.4.3 Requirements for Progressive Visual Analytics systems

Improving interaction between an analyst and an analytics system has been the focus of ex-
isting works outside of the Progressive Visual Analytics paradigm, which served as a basis
for subsequent works on the design of Progressive Visual Analytics systems. This led to the
identification of requirements and guidelines to improve the effectiveness and facilitate the de-
velopment of such systems.

While tackling the problem of moving from static data visualization to dynamic visualization,
E. G. Hetzler et al. (2005) identified the following four design guidelines that would benefit such
system:

• Allowing one to monitor the visualization and see new elements when the visualization is
updated

• Minimize disruption to the analytic and interaction process

• Provide as much interactivity as possible

• Provide dynamic update feature (i.e. varying granularity of the visualization)

Stolper et al. (2014) extended these guidelines to enumerate their goals for Progressive
Visual Analytics, that they organize as analytics component-related goals and visualization-
related goals. Analytics components should provide increasingly meaningful partial results
during the algorithm’s execution and allow users to both focus the algorithm to subspaces of
interest and ignore irrelevant subspaces. Visualizations should minimize distractions by not
changing views excessively, provide cues to indicate where new results have been found and
support on-demand refresh when analysts are ready to explore the latest results. Echoing the
second analytics component-related goal, visualizations should also provide an interface for

48

2.2. Progressive Visual Analytics

users to specify where analytics should focus, as well as the portions of the problem space that
should be ignored.

Badam et al. (2017) built on the works of E. G. Hetzler et al. (2005), Stolper et al. (2014)
and Mühlbacher et al. (2014) to propose an aggregated list of 18 requirements for the design
of Progressive Visual Analytics systems, numbered R1 to R18. They organize the require-
ments according to Mühlbacher et al.’s types of user involvement, thus identifying four cate-
gories: requirements for feedback on the result, requirements for feedback on the execution,
requirements for control over the result and requirements for control over the execution. These
categories are presented in table 2.1.

Table 2.1: Requirements for the design of Progressive Visual Analytics systems (Badam,
Elmqvist, & Fekete, 2017).

Result Execution
R1: Meaningful partial results R9: Aliveness
R2: Structure-preserving intermediate results R10: Absolute progress
R3: Retaining cognitive workflow on updates R11: Relative progress
R4: Minimized distraction during updates
R5: Cues for new results

Feedback R6: Aggregated information
R7: Uncertainty
R8: Provenance information on demand
R17: Provide similarity anchors in complex

visualizations
R18: Consistently offer quality measures
R12: Full interactivity R15: Cancellation

Control R13: Support two modes: constant update R16: Prioritization
and on-demand refresh

R14: Steer results

In this subsection about the design of Progressive Visual Analytics systems, we saw that earlier
work explored changing algorithms to better involve the user in their execution, while more re-
cent work also consider the system within which the analyst and the algorithm need to interact.
However, due to the limited number of existing implementations of Progressive Visual Analytics
systems, these works are for the most part theoretical, with only a few practical studies having
been conducted.

2.5 Interaction-related user studies in Progressive Visual Analytics

Fisher et al. (2012) explored the impact of incremental visualization on decision-making and
data exploration. 3 groups of experts had to perform an exploratory analysis with aggregate

49

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

queries (sums, averages, counting) on data they were familiar with. Results were incrementally
displayed based on ever-larger portions of the data, along with a representation of uncertainty
(confidence bounds). Incremental computation and visualization were shown to be effective
and to allow for new exploration behaviors, as long as the analyst had a good estimation of the
current result’s confidence bounds.

Glueck, Khan, and Wigdor (2014) explored progressive loading of large time series. They
asked 12 volunteers to explore data they were familiar with, concluding that progressiveness
allowed early exploration and accurate report of important insights that could be confirmed by
a prolonged analysis if needed.

Zgraggen, Galakatos, Crotty, Fekete, and Kraska (2017) compared the effects of various
conditions for 24 students having to explore 3 datasets: blocking (results are available at the
end of the computation), progressive, and instantaneous (an ideal system which displays ac-
curate results immediately for any query). They confirmed previous findings by Liu and Heer
(2014) that latency has a greater impact on brushing than on panning and zooming, and that
instantaneous and progressive visualization lead to a similar number of insights, while the latter
increases user involvement compared to blocking condition.

Badam et al. (2017) compared analysts’ sense-making with classical and Progressive Vi-
sual Analytics tools, focusing on how they build their confidence when working with approximate
answers. 10 participants from their HCI/visualization lab had to explore data to answer precise
questions. They found that users approach early results in very different ways, some preferring
a broad overview, others wanting as much information displayed as possible. This stresses
the importance of providing ways for the user to control the process, for example having control
over the speed and quantity with regards to the update of intermediate results. It also highlights
the importance of displaying information about intermediate results’ provenance and quality, in
order to allow one to efficiently leverage these controls. Perhaps more importantly, they note
that answers given based on the progressive strategy’s partial results are similar to those ob-
tained from the complete data, which supports the fact that Progressive Visual Analytics does
not lead to worse results than classical analysis techniques.

From our review of the literature, it appears that user studies about interaction in Progressive
Visual Analytics systems mainly focus on interactions between the analyst and the visualiza-
tion. This leaves the interaction between the analyst and the progressive algorithms relatively
unexplored.

3 Conclusion – Challenges for Progressive Visual Analytics

As presented in the first section of this chapter, Visual Analytics is a data analysis paradigm that
aims at increasing the user involvement in the analysis process through the use of visualiza-

50

2.3. Conclusion – Challenges for Progressive Visual Analytics

tions. While this approach has proven successful, an increase in the amount of data to handle
and in algorithm complexity can be detrimental to its efficiency. The paradigm of Progressive
Visual Analytics has been proposed as a solution to these problems, and several approaches
exist that target different application cases.

The current definition of Progressive Visual Analytics states that analysts need to be able to
interact with the algorithmic process. However, it does so using a very permissive description
of what “interaction” stands for in this case, which enabled a variety of approaches. While this
has most certainly been beneficial to spread awareness about Progressive Visual Analytics, we
now face the fact that existing works in this domain are not consistent on the terms they use.
From one work to another, different actions are designated using the same word (with steering
being the most prominent example), and similar actions are referred to in different ways.

The definition of Progressive Visual Analytics also highlights that the main difference from
Visual Analytics is the addition of intermediate results and the ability to interact with the al-
gorithm, making it clear that the algorithm plays a key role in any progressive system. This
increased complexity of the algorithmic process effectively makes process models inherited
from Visual Analytics obsolete since they often consider the algorithm as a black box, or even a
simple transition between data and visualization. A possible consequence of this legacy is that
consideration of the ways in which one can interact with the algorithm is minimal in Progressive
Visual Analytics works. From these observations, we identify our first challenge for Progressive
Visual Analytics:

Clarify what “interaction” means in the context of Progressive Visual An-
alytics, as well as investigate the role of the algorithm in the process.

Challenge PVA1

The definition of Progressive Visual Analytics advocates a tight coupling between the user and
the analytic system. When considering the existing literature, most work on interaction has
been focused on interaction between the human and the visualization, dealing with handling
intermediate results and the uncertainty that comes with them. In comparison, interaction
between the human and the algorithm are less studied, even though being able to interact
with this part of the system is a key aspect of the definition of Progressive Visual Analytics.
Considering that interacting with the algorithm can impact the execution time, the amount of
output or even the analysis process at large, it is all the more important to address this matter.
This is the basis of our second challenge for Progressive Visual Analytics:

51

Part I, Chapter 2 – From Visual Analytics to Progressive Visual Analytics

Investigate the consequences of interactions between the human and
the algorithm on the analysis process.

Challenge PVA2

52

CHAPTER 3

SEQUENTIAL PATTERN MINING

Among the various analysis techniques available to extract knowledge from data, pattern mining
aims at extracting repeating parts from the data. In a broad sense, a pattern can be seen as
a piece of data. As such, patterns can provide an interesting representation of data thanks to
three main characteristics:

• They are intelligible, due to the fact that they are formed from data elements. This is in
contrast with black box processes such as neural networks, that can for example be used
in machine learning.

• They provide very specific information, thus highlighting the presence (or absence) of
precise elements within the data.

• Their combinatorial nature leads to unexpected discoveries, as opposed to target-
centered data analysis. However, this also leads to a large amount of patterns, even
in small datasets.

Given the wide range of pattern mining techniques, providing a detailed review of the state
of the art is beyond the scope of this manuscript. Instead, we focus on existing work on our topic
of interest, sequential data. Moreover, the fact that pattern mining has been studied for many
years has led to the design of efficient algorithms for the general task. As such, recent work
within the field are mostly focused on specific approaches (considering either specific types of
data or specific types of patterns). Due to our focus on Progressive Visual Analytics, we limited
the scope of our work to the general task of sequential pattern mining, which explains the lack
of references to recent works in section 3.2, as well as in Appendix A.

Section 3.1 provides a general presentation on the matter of Sequential Pattern mining.
It opens with a number of important definitions, and then introduces the two categories of
patterns that can be encountered in the literature. The section continues with a presentation
of the various ways in which one can constrain the pattern mining process, and ends on the
matter of pattern occurrence counting. Section 3.2 presents the two categories of pattern
mining algorithms that exist in the literature. Section 3.3 concludes both this chapter and the
first part of this manuscript, highlighting two challenges for Progressive Pattern Mining.

53

Part I, Chapter 3 – Sequential Pattern Mining

Note: In the literature, the expression “sequential pattern” is used to designate both patterns
extracted from event sequences in general, and patterns in the specific approach of Agrawal
and Srikant (1995). In order to distinguish between these two, we use “Sequential Pattern”
for the general name and “sequential pattern” for the specific approach (note the difference in
capitalization).

1 Mining patterns in sequences

Sequential Pattern mining refers to the application of pattern mining techniques on sequential
data. While this type of data can be encountered in almost every domain, and as such can
take different shapes, it always involves an ordering of the data items (either a partial or total
one). For example, sequences can be encountered when considering DNA data, texts, or
temporal sequences of events such as logs. Sequences contain symbolic items, as opposed
to time series, which contain numerical values obtained by observing a phenomenon over time
(Fournier-Viger et al., 2017).

Due to the extensive existing work, several surveys on Sequential Pattern mining have been
written over the years, such as the ones by Mooney and Roddick (2013) and Fournier-Viger et
al. (2017).

1.1 General definitions

There exist two reference approaches to mine patterns from sequential data: the sequential pat-
tern approach by Agrawal and Srikant (1995) and the episode approach by Mannila, Toivonen,
and Verkamo (1995). They are presented respectively in subsections 3.1.2 and 3.1.3. Even
though these two approaches share a lot of similarities, presenting them using a unified formal
representation that takes into account every edge case quickly leads to complex expressions.
For this reason, in this subsection we propose general informal definitions that encompass the
two approaches. For a unified view with formal notations, one can refer to Joshi, Karypis, and
Kumar (1999).

1.1.1 Events

An event, in the general sense, can be defined as “something that has happened at some
point in time”. In the context of Sequential Pattern mining, this definition can be extended to
“something that has happened at some point in time, and has been recorded”. As such, an
event has at least three properties:

• Its event type, describing what has happened. The list of all event types in a dataset can
be considered the alphabet of the data.

54

3.1. Mining patterns in sequences

• Its sequence, i.e. the record series it belongs to.

• Its timestamp, describing when it happened. Even though the word “timestamp” usually
refers to a date, it can also be recorded in other ways such as the index at which the event
is found in the data. Depending on the data, the timestamp can either be a single value
(indicating an instantaneous event) or a pair of value (indicating the beginning and end of
the interval over which the event has been recorded).

Additional properties can be tied to an event depending on the kind of data and how it was
collected.

1.1.2 Sequences

A sequence is an ordered list of events (Agrawal & Srikant, 1995; Mannila & Toivonen, 1996).
Some examples can be sequences of events performed by a given subject, or sequences of
failures and breakdowns of different machines as parts of a production line. Sequences carry
two properties:

• Their size (or length), representing the number of events within the sequence. A se-
quence of size k is sometimes called a k-sequence.

• Their duration, which is the time difference between their first and last events.

Just like events, sequences can also carry additional properties depending on the data they
represent. The ordering of a sequence is based on the timestamp of the events it contains, and
as such can be time-based or index-based. Finally, an important property of such sequence is
whether or not two events can occur at the same position.

1.1.3 Sequence databases

A sequence database is a collection of sequences (Agrawal & Srikant, 1995). Its main property
is its size, the number of sequences it contains.

1.1.4 Patterns

In the context of sequential data, a pattern is a list of event types, either totally or partially
ordered. Every pattern has at least three defining properties:

• Its syntax, represented by the list of its event types.

• Its size, the total number of event types contained in this list. A pattern of size k is
sometimes called a k-pattern.

55

Part I, Chapter 3 – Sequential Pattern Mining

• Its support (or frequency), the number of its occurrences (i.e. the number of times it is
encountered in a given sequence database). This attributes relies on the way pattern
occurrences are counted, and can be expressed either in an absolute way, or relatively to
the dataset’s size.

Additionally, a frequent pattern is a pattern whose support is at least equal to a user-given
threshold value. Since pattern mining can output large number of patterns even on small
datasets, in practice a pattern mining task is always a frequent pattern mining task.

Other variations on the notion of pattern have been proposed in the literature, such as
closed patterns, frequent patterns that are not included in longer patterns of similar support.
Another example, more restrictive, is maximal patterns, which are not included in longer fre-
quent patterns (regardless of their support).

1.1.5 Sub-pattern

Given two patterns A and B, B is said to be a sub-pattern of A if its syntax is included in A’s
syntax, in the same order.

1.1.6 Pattern occurrences

The concept of “pattern occurrence” has no absolute definition. In fact, the way an occurrence
is defined depends on the strategy used to identify it, i.e. the occurrence counting strategy used
in pattern mining algorithm (see subsection 3.1.5). Broadly speaking, an occurrence of a given
pattern in a given dataset is a sub-part of the dataset where the pattern is found. Contrary
to patterns, pattern occurrences are time stamped; they have a beginning and an end in the
sequence. A pattern occurrence has the following properties:

• A duration, indicating the difference between the timestamps of its first and last events.

• A length (or size), indicating the number of events within it.

More properties can be tied to an occurrence depending on the properties of the events
they involve.

Figure 3.1 presents an illustration of the previous definitions. The sequence S of size 8 contains
3 event types (A, B and C). One can consider the pattern <B;A> of size 2. In S, <B;A> has a
support of 2. The first occurrence has a length of 3, starts at t = t6 and ends at t = t8, thus
having a duration of 3. The second occurrence of <B;A> has a length of 2, starts at t = t12 and
ends at t = t13, thus having a duration of 2.

56

3.1. Mining patterns in sequences

A C B C A B A A
S

t1 t5 t10 t15

Figure 3.1: An example of sequential data. <B;A> is a pattern, whose two occurrences are under-
lined in red.

1.2 Sequential patterns

Sequential patterns constitute most of the literature on the subject of Sequential Patterns. They
were defined by Agrawal and Srikant (1995) in the context of market basket analysis, along with
their formulation of the sequential pattern mining task:

“Given a database of sequences, where each sequence consists of a list of transac-
tions ordered by transaction time and each transaction is a set of [event types], se-
quential pattern mining is to discover all sequential patterns with a user-specific min-
imum support, where the support of a pattern is the number of data-sequences
that contain the pattern”.

This definition highlights the key aspects of sequential patterns:

1. They are to be discovered within multiple sequences, where several events may occur at
the same time;

2. The number of sequences in which the pattern is found has more value than the number
of times the pattern is found in each sequence.

This second aspect is also present in later definitions of sequential pattern mining, such as
the one by Garofalakis, Rastogi, and Shim (1999):

“Given a set of data sequences, the problem is to discover sub-sequences that are
frequent, i.e. the percentage of data sequences containing them exceeds a
user-specified minimum support”.

1.3 Episodes

The notion of episode has been proposed by Mannila et al. (1995), which offer the following
definition:

“[An episode is a] collection of [event types] that occur relatively close to each other
in a given partial order ”.

While their definition could be assimilated with the one for sequential patterns, the distinctive
aspect is that episodes are extracted from a unique sequence rather than a set of sequences.

57

Part I, Chapter 3 – Sequential Pattern Mining

As such, the support of an episode represents the actual number of times it can be found in
the data rather than the number of sequences in which it is present. In practice, when dealing
with several sequences, one can extend the definition of the support of an episode to be the
sum of its support within each individual sequence.

Mannila et al. (1995) allow a partial ordering of the event types within episodes. In particular,
they highlight two specific types of episodes:

• Serial episodes, where the event types are totally ordered (figure 3.2a);

• Parallel episodes, where no constraints are given on the relative order of the event types
(figure 3.2b).

A B C

(a) A serial episode

A

B

C

(b) A parallel episode

A

B

C

D

(c) A serial combination of par-
allel episodes

Figure 3.2: Different types of episodes proposed by Mannila, Toivonen, and Verkamo (1995).
Episodes are represented as directed acyclic graphs.

They also mention a third case, which is a serial combination of parallel episodes (figure
3.2c). In this subsection, we focus on serial episodes, as does most of the existing literature.

The difference in the way sequential patterns and episodes consider pattern occurrences is
illustrated in figure 3.3. On the left, <B;C> is considered as a sequential pattern. Even though it
can be seen four times in the data, it is encountered in three sequences, leading to a support
of 3 (or 100% if we consider relative support). On the right, <B;C> is considered as an episode.
Its support would be 1 in sequence S1, 2 in sequence S2 and 1 in sequence S3. This implies a
global support of 4 when considering all three sequences.

58

3.1. Mining patterns in sequences

D B D C B C

A B C C A

C C B C

S1

S2

S3
(a) <B;C> as a sequential pattern

D B D C B C

A B C C A

C C B C

S1

S2

S3
(b) <B;C> as an episode

Figure 3.3: Comparison between sequential patterns and episodes over the same data. Places
where the pattern <B;C> can be found are underlined. Occurrences of the pattern are highlighted in
red.

1.4 Constraints on the mining process

Adding constraints to the pattern mining process allows one to restrict its output, either to
shorten the computation or to target interesting patterns more precisely. Based on previous
work by Pei and Han (2002), Mooney and Roddick (2013) identified several types of constraints
that we organize into two categories.

1.4.1 Constraints on the pattern

As the name suggests, constraints on patterns target the pattern itself and its properties.
Mooney and Roddick identify the following three types of such constraints:

• Support constraints: Specifying a constraint based on the support of a pattern is done
to restrict the mining output to frequent patterns; i.e. patterns that are encountered at
least as often as specified by the minimum support value. Frequently called support
threshold, this constraint is at the core of frequent pattern mining algorithms’ logic, and
as such is implemented in every pattern mining system (see subsection 3.1.1.4).

• Syntax constraints: These constraints dictate the elements one is looking for. Depend-
ing on the work, algorithm and use case, it can be specified in multiple ways, either in
reference to another pattern (model-based constraint in Mooney and Roddick (2013)), by
specifying the type or property of some of its elements (item constraint in Mooney and
Roddick (2013)), using regular expressions to describe the search target . . .

• Length constraints: These constraints restrict the set of patterns for which occurrences
should be found, depending on the number of event types they contain.

59

Part I, Chapter 3 – Sequential Pattern Mining

1.4.2 Constraints on the occurrences

The idea of constraints applied to an occurrence was first introduced with Srikant and Agrawal
(1996)’s GSP algorithm, that proposed the notion of gap and span (under the name window-
size). The following constraints can be used:

• Span constraints: These constraints restrict the time difference allowed between the
first and the last events involved in a pattern occurrence.

• Gap constraints: These constraints target the relation between two consecutive events
involved in a pattern occurrence. They can either be expressed as a duration (time be-
tween the events) or a number of events that do not belong to the occurrence.

• Aggregate constraints: These constraints target the attributes of the events that com-
pose a pattern occurrence, through a numerical aggregate function such as average, min-
imum, maximum. . . For example, when considering events indicating a stock value either
increasing or decreasing, one could be looking for the pattern <increase;decrease;increase>

with the aggregate constraint that the total variation must be above 2%.

In both constraint categories, numerical constraints (length, support, duration, gap, aggregate)
can be expressed either with a minimum or a maximum value, or both at the same time. On the
other hand, syntactic constraints can be expressed as requirements or as interdictions. While
these constraints can be used as a post-process step to reduce the number of patterns in the
final output, Garofalakis et al. (1999) stress that they should be “pushed” inside the mining
process whenever possible. Doing so can provide significant performance benefits, by getting
rid of useless patterns earlier in the process.

1.5 Counting pattern occurrences

While it may appear trivial, counting the number of times a pattern appears in a sequence is not
a well-defined task. For example, if we consider the sequence in figure 3.4, one could identify
occurrences of the pattern <A;B> in several ways. The sequence could be scanned left to right,
with an occurrence starting from an event of type A until the next event of type B, without
allowing a given event to be part of more than one occurrence. Using this strategy, <A;B> has
two occurrences : (t3;t6) and (t4;t10). One could also follow the same strategy, but allow an
event to be part of several occurrences. This would lead to <A;B> having three occurrences:
(t3;t6), (t4;t6) and (t8;t10). Another possibility could be to prioritize minimal occurrences
(i.e. the ones that do not contain other occurrences), leading to <A;B> having two occurrences:
(t4;t6) and (t8;t10). While non-exhaustive, this example highlights the fact that several ways
of counting a pattern’s occurrences exist, without one being clearly better than the others. In

60

3.1. Mining patterns in sequences

fact, two counting strategies can provide two sets of occurrences O and O′ that differ in support
(i.e. |O| 6= |O′|) or in location (i.e. |O| = |O′|, O 6= O′).

C A A B A B
S

t1 t5 t10

Figure 3.4: A sequence that can contain occurrences of the pattern <A;B>

From the literature, Joshi et al. (1999) identify five methods for counting the occurrences of a
pattern. They are organized in the following three categories:

• Counting sequences. With this strategy, the support of a pattern is equal to the number
of sequences in which the pattern is found, no matter how many times it is present in
these sequences. This strategy is the one used by the GSP algorithm for sequential
patterns (Srikant & Agrawal, 1996).

• Counting the windows in which the pattern is present. This strategy consists in sliding
a fixed-size window along the sequence, with the pattern’s support being the number
of windows in which it has been found. This method is the one used by the WINEPI
algorithm for mining occurrences of an episode in a sequence (Mannila, Toivonen, &
Inkeri Verkamo, 1997).

• Counting the sets of events that match the pattern. In this strategy, an occurrence of
a pattern is a subpart of the sequence. More precisely, an occurrence of a pattern in a
sequence is a list of events included in the sequence that:

– begins with the first event type of the pattern’s syntax;
– ends with the last event type of the pattern’s syntax;
– contains all the other event types of the pattern’s syntax, in the correct order.

Joshi et al. identify two variants of this strategy, depending on whether or not an event in
the sequence can be part of several occurrences of the same pattern. In the first case,
two occurrences differ by at least one event, while in the second case they have to share
no event. In both cases, occurrences may overlap. These methods are the ones used by
the MINEPI algorithm for mining occurrences of an episode in a sequence (Mannila et al.,
1997)

Another comparison of several counting strategies is proposed by Gan and Dai (2010), more
focused on the properties of the different strategies than on their inner workings. While Joshi
et al. (1999) were considering strategies applicable to both sequential patterns and episodes,

61

Part I, Chapter 3 – Sequential Pattern Mining

Gan and Dai (2010) focus on episodes, and compare the seven strategies they identified in the
literature, according to three properties:

• Use of a search window: using a window allows one to constrain the time between data
events involved in a pattern occurrence. Depending on the strategy used, a window can
be fixed (i.e. having the same size for all patterns), variable (i.e. having its size depend on
the pattern) or unbounded (i.e. spanning the full sequence, which amounts to not using a
window).

• Anti-monotonicity: when considering a sequence S and any two patterns p1 and p2 with
p1 being a sub-pattern of p2, a support measure supp is anti-monotonic if supp(S, p1) ≥
supp(S, p2). When used in combination with a minimum support constraint, this property
allows one to safely prune the Sequential Pattern search space.

• Maximum support: indicates that the strategy is able to find the greatest number of
occurrences, compared to the other strategies. It is important to note that this property
only applies to support measures that are anti-monotonic.

Table 3.1 relates their comparison of the following strategies1 one can use to measure the
support of an episode in a sequence:

• fixed-win-supp (Mannila et al., 1995): using a sliding window of a fixed size w, the
support is the number of windows that contain the pattern.

• mo-supp (Mannila & Toivonen, 1996): In this strategy, an occurrence of a pattern is
directly a subpart of the sequence. More precisely, an occurrence of a pattern in a se-
quence is a set of events included in the sequence that:

– begins with the first event type of the pattern;
– ends with the last event type of the pattern;
– contains all the other event types of the pattern between the two extreme events in

the correct order.

A minimal occurrence is an occurrence that does not include another occurrence. The
support is the number of minimal occurrences.

• auto-win-growth-supp (Casas-Garriga, 2003): for a given max_gap value, a sliding win-
dow of a variable size w = (l−1)×max_gap is used, where l is the size of the considered
pattern. The support is the number of windows having size ≤ w that contain the pattern.

1For the sake of consistency, we use the term “support” rather than “frequency”. The names of the categories
also reflect this decision, for example using “fixed-win-supp” instead of “fixed-win-freq”.

62

3.1. Mining patterns in sequences

• maxgap-mo-supp (Méger & Rigotti, 2004): given values formax_gap andmax_span, the
support is the number of minimal occurrences that satisfy the max_gap and max_span
constraints.

• T-supp (Iwanuma, Ishihara, Yo Takano, & Nabeshima, 2005): using a sliding window
of a fixed size w, for every sub-pattern of the considered pattern this method registers
the number (called H-supp) of windows that contain the sub-pattern and start with its first
event type. The support of the pattern is the lowest H-supp value among the sub-patterns.

• non-overlapped-supp (Laxman, Sastry, & Unnikrishnan, 2007): the search targets the
set of non-overlapped occurrences of the pattern. Two occurrences are non-overlapped
if no event corresponding to one occurrence appears in between events corresponding to
the other. The support of the pattern is the number of these occurrences.

• distinct-bound-st-supp (Huang & Chang, 2008): using a sliding window of a fixed size
w, this method registers the number of windows that contain the pattern and start with its
first event type. The support of the pattern is the number of these windows.

Table 3.1: Properties of episode occurrences counting strategies (Gan & Dai, 2010). The last
column indicates the corresponding category from Joshi, Karypis, and Kumar (1999).

Strategy Window Anti-monotonicity Max support Joshi et al.
fixed-win-supp fixed-win Yes Yes Windows
mo-supp unbounded Yes No Event sets
auto-win-growth-supp variant-win No Windows
maxgap-mo-supp variant-win Yes No Event sets
T-supp fixed-win Yes No Windows
non-overlapped-supp unbounded Yes No Event sets
distinct-bound-st-supp fixed-win No Windows

When looking at the three occurrence-counting methods from Joshi et al. (1999), the strate-
gies reviewed by Gan and Dai (2010) use a mix of the last two (counting windows and counting
sets of events). The absence of the first method (counting sequences) is expected, due to the
focus on episodes, thus on single-sequence datasets. From their review, Gan and Dai (2010)
draw five observations:

• Using a restricted window-size based on the episode’s length is necessary to ensure that
an occurrence is compact enough.

• Anti-monotonicity is necessary to obtain an accurate measure of support, but insufficient.
• Whether they satisfy maximum support or not, anti-monotonic measures could introduce

inaccuracies into support measures.

63

Part I, Chapter 3 – Sequential Pattern Mining

• Since they impact the support measure, the first three observations impact the discovery
of frequent episodes.

• All existing support measures have inherent inaccuracies, impacting the soundness and
completeness of the results.

In order to avoid both false and missed frequent patterns, they recommend to choose the
window size based on the considered episode’s size and max_gap, that support measures
should be strictly anti-monotonic and have the property of maximum support. They define
strict anti-monotonicity as being anti-monotonic while only considering non-redundant sets of
occurrences. This means that any two occurrences of a given pattern should not involve the
same event type/timestamp pair at the same position.

2 Sequential Pattern mining algorithms

The Sequential Pattern mining problem is essentially an enumeration problem, that pattern
mining algorithms address by exploring the search space of Sequential Patterns (Fournier-
Viger et al., 2017). All Sequential Pattern mining algorithms share a high-level logic of extending
known k-patterns to generate (k + 1)-patterns. Among the constraints presented in subsection
3.1.4, one always used in pattern mining is the support constraint. This means that only the
patterns that are frequent with regards to a user-defined threshold are expected, in order to
limit the number of output. This led to the emergence of two strategies for Sequential Pattern
mining algorithms, that we describe in this section.

2.1 Apriori-like algorithms

The family of Apriori-like algorithms draws its name from the Apriori itemset mining algorithm
(Agrawal & Srikant, 1994), from which they borrow the following two-step strategy:

• Generating candidate patterns. A candidate pattern is a pattern whose occurrences
are not yet known. In terms of the constraints described in subsection 3.1.4, it means
that it complies with any syntax and length constraints, but its support is still unknown.
Generating a set of candidate patterns is a combinatorial task that can be done without
reading the data. The anti-monotonicity property of the support (see subsection 3.1.5 for
a definition) plays an important role in this step, allowing one to reduce the number of
combinations based on previously discovered frequent patterns.

• Checking candidate patterns. Once a candidate set has been generated, the following
step is to look for the occurrences of said candidates. This is where the data is read,
and where the constraints targeting pattern occurrences are verified. At the end of this

64

3.2. Sequential Pattern mining algorithms

step, each candidate pattern has either been encountered enough time to be considered
frequent, or has been discarded as infrequent.

Taking advantage of the anti-monotonicity property during candidate generation, Apriori-like
algorithms construct the candidate patterns by extending already discovered frequent patterns.
From the list of frequent patterns of a given size n, candidates of size n+1 are generated. These
candidates are then verified, and the frequent ones are combined to generate candidates of
size n+2. The process is then repeated until no candidate can be generated or no new frequent
pattern can be found. This leads to a general process where the two previously described steps
are performed alternately. To determine the order in which the candidates will be generated and
verified, two strategies can be found in the literature:

• Breadth-first search. Breadth-first algorithms prioritize the discovery of short patterns
over longer ones. This means that all candidates of size n are generated and checked,
before moving on to size n+ 1, and so on. When considering a tree representation of the
patterns present in a dataset, this amounts to building the tree level by level (Figure 3.5).

• Depth-first search. Depth-first algorithms prioritize extending already discovered pat-
terns. This means that when a pattern of size n is found to be frequent, it is extended
to generate candidates of size n + 1 that are then verified. This continues for as long as
possible, before going back to searching for other patterns of size n. When considering a
tree-representation of the patterns, this amounts to focusing on the branches rather than
the levels (Figure 3.5).

A CB

null

A B A C B C

A B C

Figure 3.5: Tree-representation of a set of patterns. The following patterns are included: <A>, ,
<C>, <A;A>, <A;B>, <B;A>, <B;C>, <C;B>, <C;C>, <A;A;A>, <B;C;B>, <B;C;C>.

65

Part I, Chapter 3 – Sequential Pattern Mining

Besides these two strategies to determine in which order the patterns will be processed, the
difference between two algorithms can also be found in the format they expect for their input
data. Again, two categories can be encountered, that are illustrated in table 3.2:

• Horizontal data format. In this case, the events that compose the dataset are ordered
according to the sequence they belong to, and then by their transaction time. One could
describe this data format as presenting a set of sequences and their content (see table
3.2a).

• Vertical data format. In this case, each event type is associated with the sequences in
which it is found. One could describe this data format as presenting a set of event types
and the sequences they are part of (see table 3.2b).

Table 3.2: Horizontal and vertical data format. The same data is shown in both formats.

(a) Horizontal data format. Sequences con-
tain (Time, EventType) pairs.

Sequence Id Sequence
1 (2, A) (5, A) (10, B)
2 (1, C) (10, B) (15, C)
3 (4, B) (6, A)
4 (1, B) (11, C) (12, A)

(b) Vertical data format. Occurrences contain
(SequenceId, Time) pairs.

Event Type Occurrences
A (1, 2) (1, 5) (3, 6) (4, 12)
B (1, 10) (2, 10) (3, 4) (4, 1)
C (2, 1) (2, 15) (4, 11)

Table 3.3 presents an overview of some of the available Apriori-like Sequential Pattern min-
ing algorithms. A brief description of these algorithms is available in appendix A.

2.2 Pattern growth algorithms

While it has its advantages, the method used by Apriori-like algorithms presents two major
downsides. First, even with the addition of constraints and properties such as anti-monotonicity,
the combinatorial nature of the candidate generation step means that the number of candidates
increases exponentially with the number of event types in the data. More importantly, since
candidate generation is done without reading the data, some of the candidates are absent
from the data, leading to unnecessary work during the verification step. Secondly, performing
multiple passes over the data is more and more costly as the size of the dataset increases.

The pattern growth (or frequent pattern growth) approach has been introduced to remedy
these downsides in the following ways:

• Pattern growth algorithms perform a single pass over the raw data that is used to build
a condensed representation of its important elements (i.e. the frequent event types),
which can take various forms. Some conserve the initial data structure, such as projected

66

3.2. Sequential Pattern mining algorithms

Table 3.3: Non-exhaustive overview of existing Apriori-like Sequential Pattern mining algo-
rithms. Strategy can be either Breadth- (BFS) or Depth-first search (DFS). Data format can be
either vertical (V) or horizontal (H). Pattern type can be either sequential patterns (Seq. patterns) or
Episodes

Algorithm Reference Pattern type Strategy Data format
AprioriAll Agrawal and Srikant (1995) Seq. patterns BFS H
AprioriSome Agrawal and Srikant (1995) Seq. patterns BFS H
DynamicSome Agrawal and Srikant (1995) Seq. patterns BFS H
GSP Srikant and Agrawal (1996) Seq. patterns BFS H
PSP Masseglia, Cathala, and

Poncelet (1998)
Seq. patterns BFS H

SPIRIT Garofalakis, Rastogi, and
Shim (1999)

Seq. patterns BFS H

MFS M. Zhang, Kao, Yip, and
Cheung (2001)

Seq. patterns BFS H

SPADE Zaki (2001) Seq. patterns Both V
SPAM Ayres, Flannick, Gehrke,

and Yiu (2002)
Seq. patterns DFS V

CCSM Orlando, Perego, and Sil-
vestri (2004)

Seq. patterns BFS V

MSPS Luo and Chung (2004) Seq. patterns BFS H
LAPIN-SPAM Yang and Kitsuregawa

(2005)
Seq. patterns DFS V

IBM Savary and Zeitouni (2005) Seq. patterns BFS V
WinEpi Mannila, Toivonen, and

Verkamo (1995)
Episodes BFS H

MinEpi Mannila and Toivonen
(1996)

Episodes BFS H

databases (Han, Pei, Mortazavi-Asl, et al., 2000; Pei et al., 2001), while others differ from
it, for example FP-trees (Han, Pei, & Yin, 2000) . Pattern occurrences are then obtained
through multiple passes over this condensed representation, which is more efficient than
working on the raw data.

• To address the problem of generating (and thus verifying) theoretical candidates that
are not present in the data, pattern growth algorithms build their candidates from the
condensed data representations. This ensures that any candidate exists in the data, thus
making the search for its occurrences meaningful.

The main drawback of pattern growth algorithms is that one needs to have enough memory
to store the condensed data representation. Note that most pattern growth algorithms use a
depth-first search strategy (Fournier-Viger et al., 2017).

67

Part I, Chapter 3 – Sequential Pattern Mining

2.2.1 Illustration with PrefixSpan (Pei et al., 2001)

To illustrate the concept of a condensed data representation, the following example considers
the projected databases used in the PrefixSpan algorithm, since it is the most commonly en-
countered pattern growth algorithm to mine sequential patterns. We use the example data that
Pei et al. provided in their original paper, presented in table 3.4.

Table 3.4: An example of a sequence database (Pei et al., 2001).

SequenceId Sequence
1 〈a(abc)(ac)d(cf)〉
2 〈(ad)c(bc)(ae)〉
3 〈(ef)(ab)(df)cb〉
4 〈eg(af)cbc〉

Step 1 – PrefixSpan starts with a scan of the database during which it finds the frequent
patterns of size 1. In our example, this leads to the following patterns, where 〈x〉 : 3 would
mean that the pattern containing event type x has an associated support of 3:

〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, 〈f〉 : 3.

Step 2 – From the list of frequent patterns of size 1, the search space can be divided
according to the different prefixes. In our example, we would have six: patterns having prefix
〈a〉, patterns having prefix 〈b〉 . . . patterns having prefix 〈f〉.

Step 3 – A pass over the database is performed to build the projected databases with
regards to the identified prefixes. A sequence α′ is said to be a projection of sequence α with
regards to prefix β if (1) α′ is a subsequence of α, (2) β is a prefix of α′ and (3) no other
sequence α′′ that matches the first two conditions longer than α′ exist. Table 3.5 present the
projected databases for our example.

Table 3.5: Projected databases for prefixes 〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉 and 〈f〉. (_b) indicates that the last
item of the prefix is part of the first elements of the sequence.

Prefix Projected sequences
1’ 2’ 3’ 4’

〈a〉 〈(abc)(ac)d(cf)〉 〈(_d)c(bc)(ae)〉 〈(_b)(df)cb〉 〈(_f)cbc〉
〈b〉 〈(_c)(ac)d(cf)〉 〈(_c)(ae)〉 〈(df)cb〉 〈c〉
〈c〉 〈(ac)d(cf)〉 〈(bc)(ae)〉 〈b〉 〈bc〉
〈d〉 〈(cf)〉 〈c(bc)(ae)〉 〈(_f)cb〉
〈e〉 〈(_f)(ab)(df)cb〉 〈(af)cbc〉
〈f〉 〈(ab)(df)cb〉 〈cbc〉

The projected databases are then scanned to look for the frequent patterns of size 2. In our
example, prefix 〈a〉 would yield the following patterns:

68

3.2. Sequential Pattern mining algorithms

〈aa〉 : 2, 〈ab〉 : 4, 〈(ab)〉 : 2, 〈ac〉 : 4, 〈ad〉 : 2, 〈af〉 : 2

The procedure is then repeated recursively for all frequent patterns as long as new ones
are discovered. �

Besides PrefixSpan, references to other pattern growth algorithms can be found in table 3.6.

Table 3.6: Non-exhaustive overview of existing pattern growth pattern mining algorithms. Strat-
egy can be either Breadth- (BFS) or Depth-first search (DFS).

Algorithm Reference Pattern type Strategy
FreeSpan Han, Pei, Mortazavi-Asl, et al. (2000) Sequential patterns DFS
PrefixSpan Pei et al. (2001) Sequential patterns DFS
SLPMiner Seno and Karypis (2002) Sequential patterns DFS
PROWL Huang, Chang, and Lin (2004) Episodes DFS

2.3 Implementations

When looking at existing software, various implementations of pattern mining algorithms can be
found, either independently or integrated into larger systems. While they all offer an API, only
some of them provide a graphical user interface. In particular, we can mention the following
solutions:

• Weka2, an open-source machine learning software. Some pattern mining algorithms are
implemented, such as GSP. Both a command line and a graphical user interface are
provided.

• Knime3, an open-source data analysis software. Existing modules make the pattern min-
ing algorithms implemented in Weka available to use within a Knime analysis process.

• SPMF4 (Fournier-Viger et al., 2016), an open-source data mining library offering numer-
ous Java implementations of algorithms, including GSP, SPADE, SPAM, LAPIN-SPAM
and PrefixSpan for sequential patterns and Minepi for episodes. A graphical user inter-
face is provided for some of the algorithms.

• R packages5 extend the basic features of the R programming language. The arulesSe-
quences6 package provides an interface to a C++ implementation of SPADE. There also

2https://www.cs.waikato.ac.nz/ml/weka/
3https://www.knime.com/knime-software
4https://www.philippe-fournier-viger.com/spmf/
5https://www.r-project.org/
6https://cran.r-project.org/web/packages/arulesSequences/index.html

69

https://www.cs.waikato.ac.nz/ml/weka/
https://www.knime.com/knime-software
https://www.philippe-fournier-viger.com/spmf/
https://www.r-project.org/
https://cran.r-project.org/web/packages/arulesSequences/index.html

Part I, Chapter 3 – Sequential Pattern Mining

exists the TraMineR7 (Gabadinho, Ritschard, Mueller, & Studer, 2011) package for se-
quence analysis, although it is specially designed for social sciences.

• The MLlib8 machine learning library for Spark, which offers Scala and Java implementa-
tions of the PrefixSpan (Pei et al., 2001) algorithm.

• The proprietary softwares SAS Enterprise Miner9 and IBM SPSS10 both offer a sequential
pattern mining procedure without indicating the underlying algorithm.

All of these solutions offer algorithms for itemset and association rule mining. When con-
sidering sequential data, they exclusively offer sequential pattern mining, with the notable ex-
ception of SPMF that also provides episode mining since June 2018. We were not able to
find any other implementation for episode mining. This can be explained by the fact that there
exist many ways to count the occurrences of episodes in a sequence, none of them being
better than the others (see subsection 3.1.5). In fact, episode mining is not as standardized
as itemset mining or sequential pattern mining, which does not favor its integration to existing
data science software solutions, or its adoption by analysts. However, episode mining is better
suited than sequential pattern mining when taking into account the temporal dimension, which
in our opinion makes it a more useful technique to explore sequential data.

3 Conclusion – Towards Progressive Pattern Mining

Sequential Pattern mining is the focus of an active, long-lasting research community. Although
the available literature on the matter is large, episode-related techniques and algorithms are
only a minor part of it compared to mining sequential patterns over multiple sequences. This
disparity is also present when considering existing implementations of Sequential Pattern min-
ing algorithms.

Sequential Pattern mining algorithms output large quantities of results, and adding con-
straints to the mining process has been proven an efficient way to tune it to target specific
patterns. Additionally, counting the occurrences of a Sequential Pattern can be done in several
ways, none of them being strictly better than the other. As such, the task of extracting patterns
remains highly dependent on the use case it is applied to.

Based on our review of the Progressive Visual Analytics and Sequential Pattern mining
literature, we approached the use of Progressive Pattern Mining to explore sequential data from
two complementary angles: Sequential Pattern mining within Progressive Visual Analytics, and

7http://traminer.unige.ch/
8https://spark.apache.org/docs/1.5.0/mllib-frequent-pattern-mining.html
9https://www.sas.com/fr_fr/software/enterprise-miner.html

10https://www.ibm.com/products/spss-statistics

70

http://traminer.unige.ch/
https://spark.apache.org/docs/1.5.0/mllib-frequent-pattern-mining.html
https://www.sas.com/fr_fr/software/enterprise-miner.html
https://www.ibm.com/products/spss-statistics

3.3. Conclusion – Towards Progressive Pattern Mining

progressiveness in Sequential Pattern mining. The first is related to the current state of pattern
mining in the Progressive Visual Analytics literature, while the second is about the ways in
which one could create and interact with a progressive pattern mining algorithm.

3.1 Sequential Pattern mining within Progressive Visual Analytics

As explained in chapter 2, pattern mining was used in Stolper et al. (2014)’s seminal work to
illustrate their definition of the Progressive Visual Analytics paradigm. As such, they were more
focused on the progressive aspects of their system rather than on pattern mining. The fact that
very few subsequent works (Servan-Schreiber, Riondato, & Zgraggen, 2018) have continued to
investigate pattern mining in Progressive Visual Analytics makes it a relatively underdeveloped
aspect of the progressive paradigm.

All existing pattern mining contributions in Progressive Visual Analytics have in common
the fact that they do not provide a way to explore the discovered patterns in the context of the
data, effectively turning data exploration into pattern exploration (Servan-Schreiber et al., 2018;
Stolper et al., 2014). While this can be relevant to discover trends and higher-level knowledge,
it doesn’t allow one to explore the finer information through individual pattern occurrences. In
addition, even though patterns are a close representation of the data they are found in, they
still are statistical constructs, whose properties differ from the ones of the events present in
the data. While the pattern mining community has proposed the notion of episode mining that
provides more information on individual occurrences, this has not been adapted to Progressive
Visual Analytics. We summarize this in our first challenge for Progressive Pattern Mining:

Investigate progressive pattern mining as a tool for data exploration and
not only for pattern exploration.

Challenge PPM1

3.2 Progressiveness in Sequential Pattern mining

In the pattern mining community, algorithms are considered atomic processes that take some
data as input, process it according to their parameters and return an output. In order to use
such algorithms in Progressive Visual Analytics processes, it is necessary to change this ap-
proach if we want to be able to provide the interactions that are at the core of the paradigm.
Although existing works from the visualization community have provided some suggestion to
introduce interaction within a progressive process, they do not explain how to effectively make
an algorithm progressive, and pattern mining has never been their main focus (Badam et al.,
2017; Fekete & Primet, 2016; E. G. Hetzler et al., 2005; Mühlbacher et al., 2014; Stolper et

71

Part I, Chapter 3 – Sequential Pattern Mining

al., 2014). As such, they did not provide a detailed analysis of interactions with a progressive
pattern mining algorithm, which leads to our second challenge for Progressive Pattern Mining:

Investigate the ways to make a pattern mining algorithm progressive, the
relevant interactions when using such algorithm and how they should be
implemented.

Challenge PPM2

72

PART II

Propositions

73

Reviewing the literature on both Progressive Visual Analytics and pattern mining led us to
identify four challenges for Progressive Pattern Mining, either directly tied to Progressive Visual
Analytics or specific to pattern mining in a progressive context.

Clarify what “interaction” means in the
context of Progressive Visual Analytics,
as well as investigate the role of the al-
gorithm in the process.

Challenge PVA1

Investigate the consequences of interac-
tions between the human and the algo-
rithm on the analysis process.

Challenge PVA2

Investigate progressive pattern mining as
a tool for data exploration and not only for
pattern exploration.

Challenge PPM1

Investigate the ways to make a pattern
mining algorithm progressive, the rele-
vant interactions when using such algo-
rithm and how they should be imple-
mented.

Challenge PPM2

In this part, we present the work we conducted during this PhD to tackle these challenges. We
address them by proposing six contributions described as follows, of which we consider four to
be major ones.

75

Part II,

Major contributions

C1. A study on interaction within a progressive analysis process. This contribution tar-
gets our PVA1 and PVA2 challenges, and encompasses the following elements:

C1.1. A framework describing the actions an analyst can perform when interacting with a
progressive algorithm;

C1.2. A model of how these actions impact a generic data analysis system;
C1.3. An evaluation of the impact of “progressiveness” on an algorithm’s performances.

C2. A clarification of the process of Progressive Visual Analytics, with regards to the
role of the algorithm in the process. This contribution targets our PVA1 challenge, and
encompasses the following elements:

C2.1. A clear definition for the notion of steering;
C2.2. An updated definition of Progressive Visual Analytics, that offers a more precise

vision of the interactions that can take place within Progressive Visual Analytics;
C2.3. A model of the Progressive Visual Analytics process, based on a classical Visual

Analytics model (Sacha et al., 2014).

C3. PPMT, a progressive pattern mining system. This contribution targets our PPM1 and
PPM2 challenges, and encompasses the following elements:

C3.1. The PPMT system itself, that supports the analysis tasks we identified (C5), imple-
ments all the actions from our framework (C1.1), and follows our guidelines (C6);

C3.2. A review of PPMT’s compliance with existing recommendations for the design of
Progressive Visual Analytics systems.

C4. A user experiment focused on the impact of the interactions between the analyst
and the algorithm on a progressive analysis process. This contribution targets our
PVA2 challenge.

76

3.

Secondary contributions

C5. A data and task model for an analyst exploring temporal data with patterns, special-
ized from the general model of Andrienko and Andrienko (2006). This contribution
targets our PPM2 challenge.

C6. A set of five guidelines for the design of a progressive algorithm for pattern mining
in sequences. This contribution targets our PPM1 challenge.

Outline of this part

Rather than being based on our challenges or on our contributions, the content of this part
is organized in a thematic way, as presented in figure 3.7. We open with our theoretical con-
tributions in chapters 4 and 5, the former being focused on our Progressive Visual Analytics
challenges (PVA1, PVA2) while the latter addresses our Progressive Pattern Mining challenges
(PPM1, PPM2). Chapter 6 relates our practical contributions towards challenges PPM1, PPM2
and PVA2. Finally, chapter 7 contains our experimental contribution towards challenge PVA2.

4

7

6

5

Chapters

C1. A study on interaction within a progressive process

C2. A clarification of the process of Progressive Visual
 Analytics, with regards to the role of the algorithm
 in the process

C3. PPMT, a progressive pattern mining system

C4. A user experiment focused on the impact of the
 interactions between the analyst and the algorithm
 on a progressive analysis process

C5. A data and task model for an analyst exploring
 temporal data with patterns, specialized from the
 general model of Andrienko and Andrienko (2006)

C6. A set of five guidelines for the design of a progressive
 algorithm for pattern mining in sequences

Contributions

Interaction in Progressive Visual Analytics

Towards Progressive Pattern Mining

PPMT: A Progressive Pattern Mining
Tool to explore activity data

Comparing the effect of various progressive
interactions on data analysis tasks

Figure 3.7: Relation between contributions and chapters.

77

CHAPTER 4

INTERACTIONS IN PROGRESSIVE VISUAL

ANALYTICS

As evidenced in our review of the literature, interaction within a progressive workflow can take
place in many ways (Badam et al., 2017; Kim et al., 2017; Pezzotti et al., 2017; Schulz et al.,
2016; Stolper et al., 2014; Williams & Munzner, 2004). It can be considered either between the
analyst and the user interface or between the analyst and the progressive algorithm running in
the background, both aspects presenting interesting research questions. In our work, we chose
to focus on the second aspect. In this chapter, we relate the theoretical work we conducted on
the matter of interactions in Progressive Visual Analytics, which constitutes our first two major
contributions.

4

7

6

5

C1. A study on interaction within a progressive process

C2. A clarification of the process of Progressive Visual
 Analytics, with regards to the role of the algorithm
 in the process

C3. PPMT, a progressive pattern mining system

C4. A user experiment focused on the impact of the
 interactions between the analyst and the algorithm
 on a progressive analysis process

C5. A data and task model for an analyst exploring
 temporal data with patterns, specialized from the
 general model of Andrienko and Andrienko (2006)

C6. A set of five guidelines for the design of a progressive
 algorithm for pattern mining in sequences

Interaction in Progressive Visual Analytics

Towards Progressive Pattern Mining

PPMT: A Progressive Pattern Mining
Tool to explore activity data

Comparing the effect of various progressive
interactions on data analysis tasks

ChaptersContributions

In section 4.1, we relate our exploration of the notion of interaction between an analyst and a
progressive algorithm. We propose a framework of actions an analyst can perform during such
interaction (C1.1), and a model of how these actions impact a generic data analysis system
(C1.2). The section concludes with a review of existing Progressive Visual Analytics systems
seen through the lens of our framework.

Section 4.2 is focused on our work on the concepts of Progressive Visual Analytics. We

79

Part II, Chapter 4 – Interactions in Progressive Visual Analytics

first propose a clarification of the meaning of the term steering (C2.1), that we then leverage
to propose a definition of a Progressive Visual Analytics system (C2.2). Finally, we introduce
a model of the Progressive Visual Analytics process, based on an existing model of Visual
Analytics (C2.3).

In section 4.3, we discuss some indicators that could be useful to an analyst, to help them
guide their analysis.

1 A framework of possible interactions with an algorithm in Pro-
gressive Visual Analytics

One of the conclusions we drew from our review of the Progressive Visual Analytics literature
was that existing systems have been developed without a concerted view regarding the interac-
tions they provided. This is both due to Progressive Visual Analytics being a recent paradigm
that is still developing, and to the fact that each system targets specific data types and use
cases. A drawback of this situation is that from one work to another, the same term can be used
to designate different actions, which makes comparing existing systems more complicated than
it needs to be. The main example of this phenomenon is the term steering, systematically used
to describe largely different actions, such as prioritizing parts of the data (Pezzotti et al., 2017;
Williams & Munzner, 2004), prioritizing parts of the results (Stolper et al., 2014), changing pa-
rameter values (Badam et al., 2017) or altering the results (Kim et al., 2017). This semantic
confusion has also been noticed by Badam et al. (2017) in the following statement:

“[steering] encompasses multiple types of operations, from filtering data if the ana-
lyst wants to focus on specific values, to tuning algorithm parameters and behavior
dynamically ”. (Badam et al., 2017)

At the same time, existing efforts towards a classification of interactions between an analyst
and an ongoing computation by Mühlbacher et al. (2014) fail to efficiently describe the variety
of actions in existing Progressive Visual Analytics systems, especially when considering the
control aspect of their model. For example, when considering the actions of changing the data
that will be processed by the algorithm or changing the values for the algorithm’s parameters,
Mühlbacher et al. would consider them to be of the same type (control over the execution).
Moreover, steering is not clearly located in Mühlbacher et al.’s model, the closest notion being
what is called prioritization1, considered a borderline case between execution and result control.

1 “While the final result [. . .] is not affected, the purpose is to alter the sequence of intermediate results in order
to generate presumably more interesting ones earlier.”

80

4.1. A framework of possible interactions with an algorithm in Progressive Visual Analytics

1.1 Interactions between an analyst and an algorithm

Since the dimensions used in Mühlbacher et al.’s model are too broad when considering inter-
action with a progressive algorithm, we decided to formulate our framework in terms of actions
and their impact on the Progressive Visual Analytics system at hand. Taking inspiration from
Sacha et al. (2014)’s model of the Visual Analytics process (see subsection 2.1.4), we represent
said system with the following three elements:

• Data: the data that is being explored by the analyst. Depending on the system, it can be
the raw data, or a representation of it built for the future needs of the analysis. This can
be assimilated to the data component from Sacha et al.

• Algorithm: The progressive algorithm that processes the previously mentioned data.
While not a fully-fledged node in Sacha et al.’s process (it is a transition from the data to
the model), our work targets the interactions with the algorithm. Therefore, we decided to
make it a proper part of the system.

• View: The visual representations available to the analyst to explore the data, it corre-
sponds to the visualization Visual Analytics component from Sacha et al. However, while
they emphasized the visual aspect of the process, here we designate everything that is
presented to the analyst. This potentially includes both graphical representations and
textual information, hence our choice of the term view.

We designed our framework based on two factors, the part of the system that is targeted
and the way it is done. This gives us the following four actions:

(A1) Modifying the data encompasses the different changes that can be done on a dataset,
such as adding or removing attributes, data points, or changing their attribute values.
These actions are primordial since most of the time in data analysis is spent preprocess-
ing the data (S. Zhang, Zhang, & Yang, 2003). Here, we refer to these actions being
performed while the algorithm is running, rather than during the preprocessing step of the
analytics process.

(A2) Constraining the algorithm on data is a control on the algorithm expressed on the data.
For example the analyst from Williams and Munzner (2004)’s system can guide the MDS
layout process towards an interesting region of the dataset, the next MDS run taking place
over this sub-dataset only.

(A3) Constraining the algorithm on results is a control on the algorithm expressed on the
(intermediate) results. For example the analyst of Kim et al. (2017)’s system can move

81

Part II, Chapter 4 – Interactions in Progressive Visual Analytics

points in the MDS layout so as to influence the MDS execution (e.g. to leave a local opti-
mum). The algorithm will be impacted only in the computations related to the coordinates
of the user-modified points.

(A4) Changing parameter values consists in changing the values of the algorithm parame-
ters, that can be original parameters of the analysis algorithm (e.g. number of clusters in
k-means, perplexity in t-SNE), or parameters introduced by the system’s progressiveness
(e.g. data chunk size in Schulz et al. (2016) and Badam et al. (2017)).

These actions are part of the analysis’ exploration loop, and target the different parts of
the process as illustrated in figure 4.1. Modify data acts on the Data layer, thus impacting the
Algorithm’s subsequent execution, which in turns provides new information to the View. Change
parameter values, constrain the algorithm on data and constrain the algorithm on results target
the Algorithm layer in different ways, impacting the future states of the View. The Explore
action, while not part of our framework, refers to the Visual Analytics’ "Explore view" action,
where the analyst is gathering information without actively interacting with the underlying layers
of the system (Data and Algorithm).

ActionsData Algorithm View

Constrain algorithm on results (A3)

Modify data (A1)

Constrain algorithm on data (A2)

Explore

Analyst
Execution
updated

Change parameters (A4)

Data
updated

View
updated

Figure 4.1: Interaction cycle between the analyst and the progressive system. Thin arrows repre-
sent the repercussions of the analyst’s actions on the system’s layers. Observing the repercussions
on the view leads the analyst to perform additional actions.

1.2 Progressive Visual Analytics systems seen through our framework

With our framework in mind, we looked back at the existing systems in the Progressive Visual
Analytics literature in order to describe the various ways in which they handle their interactions
between the analyst and the algorithm. We provide here a quick reminder of the interactions
these systems allow with their algorithms (see subsection 2.2.3 for a more detailed presenta-
tion). For the sake of comparison, we also include our own progressive system, PPMT, which

82

4.1. A framework of possible interactions with an algorithm in Progressive Visual Analytics

is presented in more details in chapter 6.

• Badam et al. (2017)’s system is based on successive runs of t-SNE and k-means al-
gorithms over increasingly larger subsets of the data. Analysts are able to change the
parameter values, with the new ones taking effect from the next run. While their algorithm
is not progressive, the way the system works simulates a progressive analysis environ-
ment from the analyst’s point of view.

• Kim et al. (2017) propose to manually alter MDS and t-SNE algorithms’ output (i.e change
the position of points in the low-dimensional space), either permanently or temporarily,
to guide the remaining computation until convergence is reached. Merging or splitting
selected k-means clusters permanently or temporarily is also possible.

• Pezzotti et al. (2017) use a t-SNE version with approximated computations. Analysts can
select a region in the low-dimensional space to decrease the approximation level for the
corresponding data points, thus increasing representation precision. They can also add,
modify or remove data points on the fly. If they add or remove data attributes, then the
algorithm is restarted.

• Schulz et al. (2016)’s similarity search system allows analysts to restart the procedure
with new parameters.

• Stolper et al. (2014) allow ProgressiveInsights’ users to steer a frequent pattern mining
algorithm by prioritizing or excluding patterns with a given prefix, as well as to restart the
algorithm over a subset of the data, or with new parameter values.

• Williams and Munzner (2004)’s MDSteer allows selecting a region in the MDS projection
plane to focus the computing power on it, i.e. on laying out the data points that are likely
to be projected into that region.

• Raveneau, Blanchard, and Prié (2018)’s PPMT allows analysts to prioritize the algorithm
on a pattern prefix, a data sequence, or a time interval. The algorithm restarts if the
analysts change the parameters or modify the data.

In addition to these interactions with their algorithm, these Progressive Visual Analytics
systems present incremental visualizations of the results. They support various interactions
allowing to explore these visualizations, such as zooming, filtering, ordering and highlighting
elements. . . Additional control may be available, such as tuning density map’s rendering pa-
rameters (Pezzotti et al., 2017; Schulz et al., 2016) or altering the visualization’s evolution
speed (Badam et al., 2017; Raveneau et al., 2018; Schulz et al., 2016). However, since they
are not related to the algorithm itself, we do not consider these interactions here.

83

Part II, Chapter 4 – Interactions in Progressive Visual Analytics

Table 4.1 describes existing Progressive Visual Analytics systems with regards to our frame-
work, showing that most of these systems only support a few action types, while Stolper et al.’s
system and our own implement three or more action types. The table also highlights how these
systems handle their interactions with the algorithm: either by forcing a restart, which stops the
algorithmic process, or by what we call the system’s progressive strategy, i.e. how the system
handles interaction in a progressive way, which implies that the past computations and results
are for the most part not invalidated. We can observe that, except for action A1 Modify Data in
Pezzotti et al. (2017)’s system, the same choice is made across all systems: actions A2 and A3
Constrain on Data and Results are performed through the system’s progressive strategy, while
actions A1 Modify Data and A4 Change parameter lead to restarting the algorithm. Addition-
ally, when actions A2 and A3 are available in a system, their respective authors’ descriptions
involve the words “steer” or “steering”.

Table 4.1: Analyst’s actions on running algorithms in existing Progressive Visual Analytics
systems, and how they are handled. An empty cell means that the action is not supported by the
system. R means that the action leads to restarting the algorithm. A check mark Xmeans that the
action is performed via the system’s progressive strategy.

Interaction with: Data Results Parameters
User’s action: A1. Modify A2. Constrain A3. Constrain A4. Change

Badam et al. R

Kim et al. X
Pezzotti et al. X and R2 X
Schulz et al. R

Stolper et al. R X R

Williams et al. X
Raveneau et al. R X X R

2 An updated definition of Progressive Visual Analytics

Based on the previous observation, we propose to define steering as the union of actions A2
and A3 Constrain the algorithm on Data and Results, which are at the core of the Progressive
Visual Analytics paradigm:

Steering [an algorithm] – An analyst steers the algorithm in a Progressive Visual Analytics
system, when 1/ they express a constraint on a subset of the data or of the results,
and 2/ they demand that the algorithm satisfies the constraint during the next execution
iteration(s), i.e. without restarting.

2The algorithm restarts only when adding or removing data attributes.

84

4.2. An updated definition of Progressive Visual Analytics

Here, the term “iteration” refers to a pass through the most high-level loop of an algorithm.
When considering the systems from table 4.1, these are a data exploration loop (Badam et al.;
Schulz et al.; Williams and Munzner), a result space exploration loop (Raveneau et al.; Stolper
et al.) or a model refining loop (Kim et al.; Pezzotti et al.).

Some constraints stand only for the next iteration, while others stand for all the future it-
erations. This has been well defined by Kim et al. (2017) with what they call “soft” and “hard”
replacements. However, there exists another type of persistence, in which the constraint stands
only as long as undiscovered results that satisfy it remain. This type of persistence can be seen
with algorithms exploring a data space or a result space. In Stolper et al. (2014)’s pattern min-
ing system, as well as in our own, the analyst can for example steer the algorithm towards
patterns that have a given prefix (A3), thus applying the constraint for several iterations. When
satisfying patterns can no longer be found, the system relaxes the constraint and goes back to
the rest of the patterns.

The literature sometimes presents systems as Progressive Visual Analytics ones, even though
they do not offer ways to interact with the algorithm. Oftentimes, these are systems that provide
the analyst with incremental visualizations, such as E. G. Hetzler et al. (2005), Brandes and
Pich (2007), Fisher et al. (2012) or Zgraggen et al. (2017). To clarify the notion of what is a
Progressive Visual Analytics system and what is not, we propose the following definition:

Progressive Visual Analytics system – A Progressive Visual Analytics system is the combi-
nation of three necessary aspects:

• A progressive algorithm, returning intermediate results during its execution while
offering control over the remaining computations. When possible, the results should
be of increasing quality;

• A progressive visualization of both the continuous output from the algorithm and the
state of the running computation;

• Interaction means, that provide the analyst with steering control over the remaining
algorithm’s computation (at least actions A2 and A3).

From our framework and our definition of a Progressive Visual Analytics system, we propose
a model of the Progressive Visual Analytics process inspired by the existing one for Visual
Analytics that we described in section 2.1.4, by Sacha et al. (2014). Our model is illustrated in
figure 4.3, while figure 4.2 shows the one by Sacha et al.

85

Part II, Chapter 4 – Interactions in Progressive Visual Analytics

Figure 4.2: Knowledge generation process in Visual Analytics (Sacha et al., 2014). Human ac-
tions are the blue arrows, which can lead to Visual Analytics components (filled arrows) or to the
mappings between them (dotted arrows). Red arrows represent the human cognition paths, when
generating findings by observing the system.

Computer Human

Manipulation

vis
ua

l
m

ap
pi

ng

da
ta

/m
od

el

st
ee

rin
g

observation

inspection

da
ta

 m
od

ifi
ca

tio
n

Data

pa
ra

m
et

er
 c

ha
ng

e

Visualization

observation

checking

da
ta

 p
re

pa
ra

tio
n

m
odel usage

Parameters

Data

Algorithm

FindingModel

model-vis mapping

Action

Figure 4.3: Model of the Progressive Visual Analytics process. The human can act on the analysis’
components (continuous blue arrows) or on the mappings between them (dotted blue arrows). He
can observe the system’s reactions (red arrows) to discover findings. Triple-headed arrows represent
the elements communicated in a progressive way by the system. Elements differing from Sacha et al.
(2014)’s Visual Analytics model are in bold.

86

4.3. Indicators to guide the analysis

The overall process is similar due to both Visual Analytics and Progressive Visual Analytics
being structured around an exploration loop involving the human and the system. However,
the Algorithm has been raised from an unlabeled arrow linking data and model to a first class
element of the process. It takes its input in two ways, the Data and its parameters. The analyst
is able to receive feedback on the algorithm’s execution by checking its state while it runs.
In addition to this, the four actions from our framework are represented. Data modification
(A1) complements the data preparation inherited from Visual Analytics (now limited to data
preprocessing before the exploration), while constrain on data/result (A2/A3) and parameter
change (A4) have replaced the model building action from Sacha et al. Finally, triple headed
arrows indicate the parts of the process that benefit from the intermediate results offered by the
Progressive Visual Analytics paradigm.

3 Indicators to guide the analysis

During algorithm execution, the analyst can either decide to keep exploring incoming results, to
steer the algorithm in potentially fruitful directions (A2, A3), to modify the data by incorporating
results obtained so far (A1), or to change the parameters (A4). From their point of view, one
main choice is to decide whether the current results will be lost or not, i.e. if the analysis’ current
algorithmic session will be changed or continued. The first case is related to a lack of success
in the exploration process, both intermediate and future results being deemed uninteresting. In
the second case the focus is on continuity of the current process with slight shifts and guiding,
keeping past computations and results. The decision is also taken with regards to the time it
may take to get new results and to finish the action, as well as to the perceived quality of the
results if the action is taken.

3.1 Indicators for the analyst

We propose a set of predictive indicators that a Progressive Visual Analytics system could
present for each available action, at each step of the current execution, to help the analyst
choose the next action to perform:

I1: the expected time before the next result update;

I2: the expected time to finish processing the consequences of the action. Depending on the
way it is implemented and the action considered, this could target the moment the action
is complete, or the moment it has provided a sufficient result;

I3: the expected quality from forthcoming results;

I4: the continuity of the results, i.e. how much the current results will be changed.

87

Part II, Chapter 4 – Interactions in Progressive Visual Analytics

These categories of indicators are rather general, and apply to any action (A1 to A4). How-
ever their form may differ depending on the action at hand, and on the considered algorithm.
The expected time before the next result (I1) update may be influenced by memory load. The
expected quality (I3) can either address the quality of the subset of results that are to be ex-
pected from steering the algorithm, or the general quality of all the results after a parameter
change. Continuity of results (I4) apply for instance on images (data projections) for MDS or
t-SNE, and on sets of patterns and occurrences for pattern mining. The expected time to finish
an action (I2) is based on different characteristics in pattern mining (size of search space) and
with k-means (model stability). Using representations of the confidence bounds as done by
Fisher et al. (2012) could be a way to deal with the inherent uncertainty when displaying such
indicators.

Some of these indicator categories are related to requirements for Progressive Visual An-
alytics systems (see subsection 2.2.4.3). Here we refer to Badam et al. (2017) since they
proposed the most exhaustive requirement compilation. The expected time before the next re-
sult update (I1) is related to the R13 requirement (“Support two modes: on-demand refresh and
constant update”) and the associated update speed, since the indicator could provide guidance
in whether or not the “on-demand refresh” mode will be needed. For example, let us consider
the case of an analyst that wants to explore the current state of a data visualization in order
to investigate some hypothesis. If the estimated time before the next update is short, such
as a couple of seconds, they might want to use the “on-demand refresh” mode to work with a
stable visualization. On the other hand, if the next update is not to be expected before a few
minutes, they can explore the visualization using the “constant update” mode without risk of
being disturbed by a visualization update during the process. R10-11 (“provide both absolute
and relative progress of the execution”) and R6-7 (“provide aggregated information and display
uncertainty”) are concerned with execution time (or more generally process progress) and re-
sult quality. However they focus on information delivery at present time, while our I2 and I3
indicators emphasize the benefits of a predictive estimation to assist decision-making. To our
knowledge the predictive I4 indicator has not been considered in previous works.

Though approximate, these predictive indicators should prove useful during the unfolding
of progressive analytics processes. As in any visual analytics system, the Progressive Vi-
sual Analytics analyst should be able to proceed with trial and errors, especially considering
that intermediate results address the main disadvantage of trial and errors, that is waiting to
see whether the current try leads to better outcome or not. This stresses the need for undo-
redo functionalities in Progressive Visual Analytics system, a topic that has been mentioned by
Stolper et al. (2014), and a potential new requirement for Progressive Visual Analytics systems.

88

4.4. Conclusion

3.2 Indicators in existing systems

Since they are broad enough to apply to any action from our framework, implementations of
these indicators can vary greatly from one system to another. When considering existing Pro-
gressive Visual Analytics systems, we did not found any implementations available, although
some of the systems provide estimates of the current result quality. Examples are displaying a
measure of projection error (Badam et al., 2017; Williams & Munzner, 2004), offering different
levels of approximation (Pezzotti et al., 2017), introducing convergence measures (Kim et al.,
2017) or measuring the execution progress (Badam et al., 2017; Raveneau et al., 2018). If
they were estimates of the future results, these features would have satisfied indicator I3. It is
important to note that such indicators are highly dependent on the algorithm in use and on the
system’s inner workings. For example, an estimate of the remaining time before the next result
(I1) can be affected by the system’s current memory load. As such, the presented value could
fluctuate depending on the creation or termination of other unrelated demanding processes.

4 Conclusion

Our review of the literature highlighted the fact that existing works have proposed different
ways to interact with their algorithms, which makes defining the notion of “interaction” in Pro-
gressive Visual Analytics complicated. This is most clearly evidenced with regards to the idea
of steering, as noted by Badam et al. (2017). In this chapter, we presented our work towards
clarifying what interaction can mean within this paradigm. Our main contribution on this matter
is a framework containing four kinds of interactions, that we believe covers all possible cases.
We were able to look back at the existing literature through its lens, which led us to propose a
clear definition for progressive systems and for the notion of steering the algorithm. Evaluating
a framework is a complicated matter, but considering that we successfully used ours to both
describe existing systems and generate new knowledge, its usefulness appears to be validated.

Having a clearer vision of interactions allowed us to identify several ways in which they can
impact the intermediate result inherent to progressive algorithms, which will be useful for the
design of future systems. We also leveraged this knowledge to propose a visual model of the
Progressive Visual Analytics workflow, along with a list of indicators that could be useful to an
analyst when available in progressive tools.

These theoretical contributions, while able to stand by themselves, are an important basis
for the practical work we present in chapter 6. They allowed us to design and implement an
efficient progressive pattern mining tool, and should be useful to the community. On the other
hand, the work we conducted on indicators to guide an analyst is only a start. As such, further
investigation and experimentation are needed to provide a complete perspective on this matter,
with regards to their feasibility and how they can impact the data analysis process.

89

CHAPTER 5

TOWARDS PROGRESSIVE PATTERN

MINING

As evidenced in the state of the art, adding progressiveness to a process is not a trivial change.
In this chapter, we relate the theoretical work we conducted on the matter of Progressive Pattern
Mining. Our main interest was directed at how Progressive Pattern Mining algorithms can be
developed, which begs the question of what analysts may want to use them for. We focused on
how progressiveness can impact the defining aspects of sequential pattern mining1, especially
with regards to the analysis tasks that are usually performed using sequential patterns. This
constitutes our two secondary contributions.

4

7

6

5

C1. A study on interaction within a progressive process

C2. A clarification of the process of Progressive Visual
 Analytics, with regards to the role of the algorithm
 in the process

C3. PPMT, a progressive pattern mining system

C4. A user experiment focused on the impact of the
 interactions between the analyst and the algorithm
 on a progressive analysis process

C5. A data and task model for an analyst exploring
 temporal data with patterns, specialized from the
 general model of Andrienko and Andrienko (2006)

C6. A set of five guidelines for the design of a progressive
 algorithm for pattern mining in sequences

Interaction in Progressive Visual Analytics

Towards Progressive Pattern Mining

PPMT: A Progressive Pattern Mining
Tool to explore activity data

Comparing the effect of various progressive
interactions on data analysis tasks

ChaptersContributions

Section 5.1 is about our investigation of the analysis tasks that can be performed when us-
ing a Progressive Pattern Mining algorithm. We relate our reasoning for choosing the existing
model from Andrienko and Andrienko (2006) as a basis. We then provide a detailed presenta-
tion of their model, before introducing our own version, specialized for the use of pattern mining
techniques (C5).

1In this chapter, the term “sequential pattern” refers to the general notion of “patterns within sequences” (see the
Note on Sequential Patterns in chapter 3, page 54)

91

Part II, Chapter 5 – Towards Progressive Pattern Mining

In section 5.2, we build upon our model and our other works to propose a set of guidelines
for the design of a Progressive Pattern Mining algorithm (C6).

1 Analysis tasks performed with patterns

In this section, we present our work on the tasks that an analyst using pattern mining techniques
may want to perform. We relate our reasoning for choosing Andrienko and Andrienko (2006)’s
model among all the ones we presented in our review of the literature (see subsection 2.1.5.3)
and offer a more detailed description of their original model, before presenting a specialized
version that is specific to data exploration tasks involving sequential pattern mining.

1.1 Choosing a task model

To investigate the tasks performed with pattern mining, we were looking for a model being both
exhaustive and built with temporal data in mind. The exhaustiveness (with regards to the tasks
it encompasses) was a direct requirement from our goal of considering all the tasks that can be
performed with a non-progressive algorithm, and filtered out all models focused on a specific
analysis technique, such as interacting with a visualization. The requirement for a model suited
to temporal data came from the nature of sequential patterns, so as to give us the ability to deal
with the specificities of the temporal dimension. For these reasons, we decided to build on the
model proposed by Andrienko and Andrienko (2006). They propose a general high-level model
designed to express the tasks an analyst may perform on temporal data that we specialize for
the specific case of working with sequential patterns. In addition to the rapid presentation we
provided in subsection 2.1.5.3, the next two subsections offer a more in-depth presentation of
their model, followed by our specialization.

1.2 Andrienko and Andrienko (2006): data model

In their work, Andrienko and Andrienko consider that a dataset is composed of multiple data
records, each of these records being made of the same set of variables, that take their values
from the variable’s domain. They distinguish two kinds of variables:

• The referrers are the variables that describe the context in which the data records were
collected. Their values are called references.

• The attributes are the variables that represent measurements, observations and calcula-
tions performed in the context described by the referrers. Their values are called charac-
teristics.

92

5.1. Analysis tasks performed with patterns

For every combination of values of the referrers, there is at most one combination of values
for the attributes. Thus, the data representation can be seen as a data function f from R =
R1 × R2 × . . . Rp to C = C1 × C2 × . . . Cq where Ri is the value domain of the ith referrer and
Ci is the value domain of the ith attribute (i.e. the set of possible characteristics). Figure 5.1
illustrates this model.

R C
fr1

r2

r3

<a1, b1>

<a1, b2>

<a2, b1>

Figure 5.1: The data model of Andrienko and Andrienko (2006). R is the set of references (only one
referrer in this example), and C is the set of characteristics (two attributes a and b in this example).
The transition function f links the references to the corresponding characteristics.

Andrienko and Andrienko provide the example of a dataset containing records of the pop-
ulation numbers in municipalities of a country over the years. In this case, each record has
several variables: municipality, whose domain is existing municipality names, year, number of
persons and number of unemployed persons whose domains are positive integer numbers, and
employment rate, whose domain is a percentage. Here, municipality and year are the refer-
rers, that provide the context in which the measurements took place, and the other elements
are attributes, that are measured each year. As such, the data representation can be seen as
a function from Municipality × Year to Number of persons × Number of unemployed persons
× Employment rate.

1.3 Andrienko and Andrienko (2006): task model

By “task”, Andrienko and Andrienko refer to an analyst looking for some information. Each
task contains some known parts (that drive the search), some unknown parts (that need to be
searched for) and a target, which is the information the analyst is looking for. Depending on the
task, the target can either be identical to the unknown part, or only a subset of it. Based on the
previous data model, Andrienko and Andrienko identify eleven task categories, organized as
presented in figure 5.2. They divide all possible tasks between two categories, the elementary
tasks and the synoptic tasks, although they note that elementary tasks only play a marginal
role in exploratory data analysis, due to their extreme simplicity.

93

Part II, Chapter 5 – Towards Progressive Pattern Mining

Visualization tasks

Elementary tasks
(on values)

Synoptic tasks
(on sets)

Lookup Comparison Relation Seeking Descriptive tasks Connectional tasks

Lookup Comparison Relation SeekingDirect Inverse

InverseDirect
Homogeneous

behavior

Heterogeneous
behavior

Figure 5.2: The task model of Andrienko and Andrienko (2006). Illustration by Aigner, Miksch,
Schumann, and Tominski (2011).

1.3.1 Elementary tasks

Elementary tasks refer to individual elements of data, either references or characteristics. Their
target can either be one or more characteristics, or one or more references. However, if the
task involves more than one reference, each of them must be considered individually. They
divide these tasks in three categories, that we illustrate using the dataset presented in the data
model subsection.

Lookup tasks involve a search for information, and are divided in two categories. Direct
lookup tasks designate tasks where the references are known and characteristics are the tar-
get. An example of such task could be “What is the number of unemployed persons in the
municipality X in year Y?”. Inverse lookup tasks represent the cases where the characteristics
are known and one is looking for some or all of the corresponding references. An example of
such task could be “Which municipalities have an employment rate of 80% in year X?”.

Comparison tasks involve questions about the relations that exist between references or
between characteristics, where the relation is the target. For Andrienko and Andrienko, a “com-
parison” is “[the] identification of the kind of relation existing between two or more elements of
some set and, whenever permitted by the properties of the set, numerical specification of this
relation on the basis of distances or ratios between the elements”. Comparison tasks involve
performing a lookup task before comparing the result of the lookup with either another lookup’s
result or a given value. Depending on whether it is a direct or an inverse lookup, the compari-
son will respectively be a direct comparison or an inverse comparison. An example of a direct
comparison task could be “How does the unemployment rate of municipality X compare to that
of municipality Y in year Z?” (underlying direct lookups are needed to find the unemployment

94

5.1. Analysis tasks performed with patterns

rate of both municipalities, that can then be compared). An example of an inverse comparison
task could be “How did the number of municipalities having an employment rate below 80%
evolve between year X and year Y?” (underlying inverse lookups are needed to find the lists of
municipalities, whose sizes can then be compared).

Relation seeking tasks also involve questions about the relations that exist between ref-
erences or between characteristics, but where the relation is already known. The target of the
task is therefore part of either the references or the characteristics. In other words, the analyst
is looking for occurrences of the specified relation. An example of such task could be “In which
municipalities did the employment rate increase from year X to year Y?” (the “increase of em-
ployment rate from year X to year Y” relation is known, and one wants to find municipalities in
which it occurs).

1.3.2 Synoptic tasks

To describe these tasks, Andrienko and Andrienko introduce the notion of “behaviors” of the
data function f (Andrienko and Andrienko (2006), p. 83), a general term that encompasses
notions such as distributions, variations, trends. . . With regard to the data model, a behavior is
an abstract configuration of characteristics corresponding to a given reference set. Figure 5.3
provides an illustration of this notion, using the following inventory dataset:

Product Time Quantity
A January 1000
A February 900
A March 1200
A April 1000
A May 1400

R C
Product A, January <1000>

<900>

<1200>

f

Product A, February

Product A, March

Product A, April

Product A, May
<1400>

<1000>

<900>

<1200>

<1400>

Figure 5.3: Abstract representation of a behavior. R is the set of references (Product and Time), and
C is the set of characteristics (Quantity). On the right, an abstract representation of the behavior of
the data function f over R, considering that the references are ordered by their temporal dimension.

95

Part II, Chapter 5 – Towards Progressive Pattern Mining

Another important notion when considering synoptic tasks is that of a structure2. Given
a behavior, a structure is an interpretation of the behavior by the observer that reflects its
essential features “in a substantially shorter and simpler way than specifying every reference
and the corresponding characteristics” (Andrienko and Andrienko (2006), p. 85). Andrienko
and Andrienko describe the relation between a behavior and its structures as the structure
approximating the behavior. Essentially, a behavior can be described as a data template while
a structure is the result of an observation of said template of the data. As such, the same
behavior can lead to several structures, depending on the analyst knowledge, the precision
required. . . If we consider the behavior from figure 5.3, structures such as “an overall increase”
or “a succession of decrease then increase” could be observed. Note however that behaviors
and structures are not necessarily about the temporal dimension, but may be related to any
other referrer, such as the spatial dimension for example.

In essence, synoptic tasks deal with sets as a whole, and as such involve subsets of the
references (possibly all of them), behaviors, and relations between them. Synoptic tasks are
divided in two sub-categories, the descriptive and connectional tasks (see figure 5.2). Descrip-
tive tasks (lookup, comparison and relation seeking) echo the analysts’ actions described for
the elementary tasks, but applied to behaviors (as such, they can be considered as behavior
characterization tasks), while connectional tasks are specific to the synoptic category.

Synoptic lookup tasks are similar to elementary lookup tasks, in that they are divided
between the direct and inverse lookup tasks. Direct synoptic lookup tasks involve specifying
a set of references and a behavior, in order to find structures that approximate the behavior of
the characteristics. An example of such task could be “What is the evolution of the employment
rate for municipality X over time?” (The references are a municipality and a set of values for
the year referrer, and we want to describe the evolution of the associated characteristics). On
the other hand, inverse synoptic lookup tasks involve specifying a structure in order to find sets
of references with the behavior over those corresponding to the structure. An example of such
task could be “Find the time intervals in which the employment rate increased” (the structure is
“increase of the employment rate”, over the year referrer).

Synoptic comparison tasks deal with relations between behaviors, and as such between
the structures approximating these behaviors. This means determining how two behaviors are
related, i.e. how they are similar and how they are different. Direct synoptic comparison tasks
target the relation between behaviors, while inverse synoptic comparison tasks refers to the
tasks where one is trying to determine the relations between sets of references correspond-
ing to specific behaviors or structures, or determining relations between reference sets and
individual references.

2In their work, Andrienko and Andrienko use the term “pattern”. To avoid any confusion between this and the
pattern mining context our work belongs to, we use the term “structure” instead.

96

5.1. Analysis tasks performed with patterns

Synoptic relation seeking tasks involve finding occurrences of specific relations between
behaviors, and determining the corresponding references sets. The authors state that said
relations can be same, different, opposite or even more precise cases of similarities and differ-
ences.

Synoptic connectional tasks refer to the cases when an analyst is trying to find connec-
tion structures that approximate some mutual behavior, either between different phenomena
or between parts of the same phenomenon. A distinction is made between homogeneous
and heterogeneous behaviors, with both being subdivided the same way elementary tasks and
synoptic descriptive tasks are (lookup, comparison and relation seeking).

1.3.3 Formal description of the tasks and completeness of the model

Andrienko and Andrienko provide a formal description of the analyst’s tasks using mathematical
functions. Considering the representation in figure 5.1, where R is the set of references and
C the set of characteristics, any data subset can be expressed with a notation of the form
f(x) = y, with x being a subset of R and y a subset of C. Since a task is a search for
information under certain constraints, its formal representation takes the aforementioned form,
augmented with the missing parts that constitute the search target. These are located at the
start between a question mark and a colon, as illustrated in formula 5.1, where one is looking
for the attributes (y) corresponding to the given referrer (r).

?y : f(r) = y (5.1)

Additional symbols are introduced when needed to represent behaviors, structures and
relations. Formula 5.2 illustrates the behavior comparison task where two behaviors (β1 and
β2) are specified and one is looking for 1/ the structures (s1 and s2) that approximate (≈) these
behaviors (β1 ≈ s1;β2 ≈ s2), and 2/ the relation (λ) between the structures.

?s1, s2, λ : β1 ≈ s1;β2 ≈ s2; s1λs2 (5.2)

Since the different task categories of their model have been identified by enumerating all the
possible ways to introduce unknown elements in the general formulation of the task, Andrienko
and Andrienko are confident in saying that the model is complete with regards to the different
types of analysis tasks.

97

Part II, Chapter 5 – Towards Progressive Pattern Mining

1.4 Data model for sequential patterns

The first step in specializing Andrienko and Andrienko’s model was to adapt the data model
used to express the various task categories. From our description in chapter 3, a sequential pat-
tern mining algorithm’s first purpose is to search for occurrences of patterns within sequences.
In order to allow our specialized model to represent tasks involving both the pattern itself and
specific occurrences of the pattern, we identify three referrers and one “main” attribute:

• Referrers: sequence, time and pattern

• Attribute: occurrence

Values for the sequences, patterns and occurrences can be seen as objects, having an ID
associated to a set of properties. This allows one to either reference specific values (using
their IDs) or describe some combination of properties. Possible examples could be sequences
of a given length, patterns satisfying a given syntax or interestingness for the analyst, and
occurrences of a specific duration.

The last referrer, time, behaves differently. It is a scale (either continuous or discrete) that
can also have associated properties (day/night, weekday or not, season. . .). Although our work
in this section only takes into account instantaneous events, we do not see any meaningful
change if ranges were used for the time referrer.

Following Andrienko and Andrienko’s methodology, we provide the following formal notation
for our data model for pattern mining tasks:

d

∣∣∣∣∣P × S × T → O
(p, s, t) 7→ o if o is an occurrence of p in s at time t3

In the above notation, T is the time referrer, S is the set of data sequences, P is the set of all
the patterns generated by the mining algorithm, andO is the set of all the occurrences identified
by the mining algorithm. Note that this representation encompasses not only the patterns but
also the whole dataset since data events can be seen as patterns of size 1. Therefore, the
representation can be used to formulate questions about both the dataset and the patterns that
can be found inside. Figure 5.4 provides an illustration of this notation, with the d function being
used to describe the three occurrences of pattern < B ; C >.

3Here, t can be the start of the occurrence, its end, or any timestamp in between

98

5.1. Analysis tasks performed with patterns

A B C AS1 t1 t5

C
o1

B D B CS2 t1 t5

CD
o2 o3

C B AS3 t1 t5

C

d(< B ; C >, S1, t2) = o1

d(< B ; C >, S2, t5) = o2

d(< B ; C >, S2, t8) = o3

d(< B ; C >, S3, t5) = NULL

Figure 5.4: Example of a small sequence dataset (left). Examples of instantiation for the data
function d are given for the occurrencs of pattern < B ; C > (right). A fourth example is present,
describing an absence of occurrence.

1.5 Task model for patterns

Since Andrienko and Andrienko’s task model is exhaustive with regards to the way they formu-
late data analysis tasks, we focused on verifying that all 11 categories are applicable to pattern
mining. While they technically are, due to the fact that we can derive them from our data model
which is a specialization of Andrienko and Andrienko’s, we wanted to make sure that every
task category is relevant for a pattern mining driven data exploration. We ended up with the
examples provided in table 5.1.

As illustrated by table 5.1, all 11 task categories are valid when considering pattern mining
tasks. However, a strong dichotomy between the referrers is highlighted by some of the cate-
gories, when a distribution over the patterns is involved. The time and sequence referrers are
respectively a metric space and a population of elements that can reasonably be considered
independent. As such, they allow one to consider distributions over their domains. Typical
examples include observing some phenomenon over a given time-period, or searching for the
sequences that verify a given property. The same cannot be said of the pattern referrer, due
to the fact that patterns are obviously not independent, since the larger ones are built from
the shorter ones. As such, some inclusion relations occur among them when considering their
syntax, introducing a bias into any distribution built on the pattern referrer. This mainly affects
synoptic tasks, which by essence involve distributions (behaviors and structures) over the re-
ferrers. Based on this observation, we claim that the synoptic tasks involving a distribution
over patterns are not rigorously correct in the general case, and that any conclusion based
on their result may be misleading in practice. This is especially true if the pattern population is
not narrowly selected to avoid inclusion relations among patterns, which are a consequence of
their combinatorial nature. It is however important to note that synoptic tasks remain valid for
distributions over the other referrers (time and sequences).

99

Part II, Chapter 5 – Towards Progressive Pattern Mining

Table 5.1: Examples of tasks on sequential patterns

Elementary tasks

Lookup Direct

• What is the duration of the occurrence of pattern AB that
happens at time 45 in sequence S1?

• What is the length of the occurrence of pattern BD that hap-
pens at time 3 in sequence S2?

Inverse • In which sequences does pattern BCD occur?
• Which patterns occur in sequence S1 at time 3?

Comparison Direct
• What is the relation between the duration of the occurrences

of pattern DAB that happen respectively at times t1 and t2 in
sequence S?

Inverse
• Compare the sequence that has the longest occurrence of

pattern ADB with the sequence that has the shortest occur-
rence of the same pattern.

Relation seeking • Which patterns have twice the number of occurrences of pat-
tern BCD?

Synoptic tasks

Lookup Direct • Are the occurrences of pattern ABC uniformly distributed
over the sequences?

Inverse • In sequence 15, during which time intervals does the pattern
ABC occur regularly each 3 days?

Comparison Direct • Compare the temporal distributions of the occurrences of
pattern ABC between sequences 1 and 2.

Inverse • For the sequences of the control group, compare the periods
in which ABC collapses with the periods in which ADE rises.

Relation seeking • In which sequences is the temporal distribution of ABC oc-
currences identical to the one in sequence 5?

Connectional • Is the activity in sequence 45 influencing the activity in se-
quence 71?

1.6 Leveraging our task model

Being exhaustive in its categorization of analysis tasks, our model can be used as a guide
during the design of a temporal data analysis system using pattern mining. First, the data
model can be leveraged as a basis for the data structure design. Secondly, the task model can
be seen as a cartography of tasks, from which one can choose the features that need to be
offered by the system. For the same reason, our model can also be used when one needs to
choose an analysis tool to perform a specific task. In this case, the model’s cartography of tasks
is used as a reference frame to compare several systems, in order to decide which solution is
the most appropriate to perform the analysis. However, this presupposes the availability of a
description of several systems in terms of the categories of our task model. Such description
should ideally be proposed by the system’s authors, or by users that are sufficiently familiar

100

5.2. Guidelines for Progressive Pattern Mining algorithms

with the system’s features and inner workings. In this thesis, we propose such a description
of PPMT, our analysis tool, in subsection 6.2.2. We also used our task model to formulate
guidelines for the design of Progressive Pattern Mining algorithms that were then implemented
in PPMT.

2 Guidelines for Progressive Pattern Mining algorithms

The literature already contains some requirements and guidelines for the design of efficient
Progressive Visual Analytics systems, as presented in subsection 2.2.4.3. Instead, we focused
on providing guidelines specific to progressive pattern mining algorithms, based on the pattern-
oriented task model described in the previous section and on our experience in working with
patterns. We end up with the following 5 guidelines, with guidelines G1, G2 and G4 being
directly based on our pattern-oriented model.

Extract episodes (G1)

Our pattern-oriented task model shows that occurrences play a key role when exploring
temporal data with pattern mining techniques. However, the majority of existing sequential pat-
tern mining approaches (Mooney & Roddick, 2013) adopt the vision from Agrawal and Srikant
(1995), which focuses on the sequences in which a pattern is found rather than where the pat-
tern occurs in these sequences. To be able to leverage the individual occurrences of patterns,
using episode mining as introduced in Mannila et al. (1995)’s work seems more suited to the
exploration of a temporal dataset. Doing so, the analyst is able to explore and analyze the
context in which pattern occurrences are discovered.

When adapting an existing algorithm, one needs to consider the fact that episode mining
deals with a single sequence. As such, one needs to either adapt an episode mining algorithm
to deal with several sequences (by adding the occurrences found in each sequence), or adapt a
sequential pattern mining algorithm to extract all the occurrences of a pattern that can be found
in each sequence. While the first solution is easier to implement, it should be noted that most
open source pattern mining implementations extract sequential patterns rather than episodes.

Save occurrences (G2)

The output of a pattern mining task is a set of frequent patterns and their number of oc-
currences. To be able to explore the context in which these occurrences are found, and to be
able to perform the different categories of tasks we evidenced in our model, one needs to save
the pattern occurrences. It should however be noted that this is likely to largely increase the
memory needs of the algorithm.

101

Part II, Chapter 5 – Towards Progressive Pattern Mining

Use a breadth-first Apriori-like strategy (G3)

Progressive Visual Analytics algorithms rely on intermediate results to provide the ana-
lyst with early and constant feedback during the computation. This aspect of the paradigm
makes Apriori-like strategies better candidates than pattern growth ones for a progressive pat-
tern mining algorithms. This comes from the fact that Apriori-like algorithms start generating
candidates and verifying them (thus potentially discovering frequent patterns) right from the
start of the computation, whereas pattern growth algorithms first need to build their condensed
representation of the data before considering extracting patterns from it. In addition to this
recommendation, Stolper et al. (2014) already identified that breadth-first strategies are more
interesting than depth-first ones when dealing with progressive pattern mining. Their reasoning
is that, since short patterns are the building blocks of the longer ones, it is more useful to focus
the early stages of the computation on their extraction, thus providing the analyst with a better
overview of what can be expected later on.

Offer steering on patterns, sequences and time (G4)

The data model presented in the previous section makes the referrers the keys to access
the corresponding attributes. As such, an ideal progressive pattern mining algorithm steering
should be based on referrer values. In practice, this means that such an algorithm should
support steering its execution on patterns, sequences, time periods, or any combination of
these dimensions.

Steering on sequences or time induces a constraint on pattern occurrences. This constraint
reduces the number of valid occurrences, which then reduces the number of generated patterns
thanks to the minimum support threshold constraint. Steering on patterns is more direct since
the compliance check does not impose to read the data. Having a pattern’s syntax is enough
information to know whether the pattern complies with the steering target, and thus decide if its
occurrences should be extracted or not.

Provide information on the algorithm activity (G5)

Existing guidelines for Progressive Visual Analytics systems already highlight the fact that
an analyst needs information about what an algorithm has already done, what it is doing and
what remains to be done, in order to efficiently interact with it. When considering pattern
mining algorithms, important information are the currently explored pattern size, the number
of candidates of this size (and how many have already been checked), and whether steering
is occurring or not. In case of an ongoing steering, knowing its target is also an important
information. Beyond these core elements, other information can be useful, for example an
estimate of the speed at which the algorithm is running its search for frequent patterns.

102

5.3. Conclusion

3 Conclusion

In this chapter, we presented Andrienko and Andrienko (2006)’s data analysis task model, and
specialized it for the case where said analysis is performed using sequential pattern mining
techniques. We evidenced an important difference between the pattern and the other two
referrers of our data model (sequence and time), in that considering distributions over the pat-
terns can be misleading. This had consequences on the design of PPMT, presented in the next
chapter, where we prioritized time and sequences to structure our visualizations. In a second
section, we introduced five guidelines for the design of progressive pattern mining algorithms,
to be used alongside existing recommendations for the design of progressive systems.

103

CHAPTER 6

PPMT: A PROGRESSIVE PATTERN

MINING TOOL TO EXPLORE ACTIVITY

DATA

In this chapter, we present our practical work towards implementing a system that allows an an-
alyst to explore activity data, using pattern mining1 techniques within the paradigm of Progres-
sive Visual Analytics. This Progressive Pattern Mining Tool, which we refer to by its acronym
PPMT, constitutes our third major contribution. Since it heavily relies on the algorithm we imple-
mented in PPMT, this chapter also contains the last component of our first major contribution.

4

7

6

5

C1. A study on interaction within a progressive process

C2. A clarification of the process of Progressive Visual
 Analytics, with regards to the role of the algorithm
 in the process

C3. PPMT, a progressive pattern mining system

C4. A user experiment focused on the impact of the
 interactions between the analyst and the algorithm
 on a progressive analysis process

C5. A data and task model for an analyst exploring
 temporal data with patterns, specialized from the
 general model of Andrienko and Andrienko (2006)

C6. A set of five guidelines for the design of a progressive
 algorithm for pattern mining in sequences

Interaction in Progressive Visual Analytics

Towards Progressive Pattern Mining

PPMT: A Progressive Pattern Mining
Tool to explore activity data

Comparing the effect of various progressive
interactions on data analysis tasks

ChaptersContributions

The first five sections of this chapter form our description of PPMT (C3.1). Section 6.1
describes our design process and focuses on the main design choices we made. Section 6.2
details the features of PPMT, while section 6.3 contains descriptions of the various widgets that
compose its user interface. Sections 6.4 and 6.5 are dedicated to the internal aspects of PPMT,
respectively detailing its architecture (both theoretical and our implementation) and describing

1As explained in section 6.2, PPMT only supports episode mining. As such, in this chapter the terms “pattern”
and “sequential pattern” refer to the notion of episodes, as described in subsection 3.1.3

105

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

the pattern mining algorithm at work.

In section 6.6, we relate two evaluations we conducted on PPMT. The first is a review of
existing recommendations for Progressive Visual Analytics systems, and how PPMT fares with
regards to implementing them (C3.2). The second evaluation is focused on the Progressive
Pattern Mining algorithm, in order to study the impact of progressiveness on its performances
(C1.3).

PPMT is free open-source software, distributed under the GPLv3 license at https://github.com/
VRaveneau/PPMT. An instance of PPMT is available at http://ppmt.univ-nantes.fr/ppmt. It
contains the coconotes dataset we used during our work, that is described in subsection 6.1.3.
While the version of PPMT provided here should work in all modern browsers, we recommend
the use of Firefox.

Note: In this chapter, we provide images of PPMT being used during the analysis of human
activity data. As such, each data sequence corresponds to a single user, and we use the term
“user” to refer to what is called a “sequence” in the literature and in our data model presented in
chapter 5. For the sake of clarity, we use the term “analyst” to refer to the person using PPMT.

1 Design process

In this section we describe our design process and offer a retrospective presentation of the
design choices we made.

1.1 Organization of the process

Building the current version of PPMT was a two-year process that involved several iterations,
during which we alternated between design and development sessions, based on the feedback
we gathered. Most of the time, this feedback came from our own use of the tool or from
members of our team, including the research engineer who collected the dataset we were using
and was interested in its exploration. One notable exception was at the start of 2018, where
we conducted a user experiment to receive more feedback on data exploration in a progressive
context. This led us to refine some parts of the user interface, mainly adding feedback about the
current state of the algorithm. More information about this experiment is available in appendix
B. Screenshots of older iterations of PPMT are available in appendix C.

106

https://github.com/VRaveneau/PPMT
https://github.com/VRaveneau/PPMT
http://ppmt.univ-nantes.fr/ppmt

6.1. Design process

1.2 Main design choices

Since we were interested in how one can leverage the Progressive Visual Analytics paradigm to
explore activity data using pattern mining, we experimented with the three following topics: the
progressive exploration of activity data, the design of progressive pattern mining algorithms,
and the interactions with a progressive pattern mining algorithm. The following subsections
relate the design decisions we took during this process.

1.2.1 Provide a browser-based interface

While going for a native application would have given us more freedom to develop it, we de-
cided to create a browser-based interface. The main reason was that it would make our tool
easily accessible from most computers, without needing to install any particular software. In
retrospect, we still stand by this decision, even though it limited us to a single thread due to
limitations on shared memory that were introduced in all major browsers in early 2018, in reac-
tion to the Meltdown and Spectre security issues234. Enabling multi-threading through the use
of web workers would have therefore required duplicating the data, thus greatly increasing the
browser memory requirements.

1.2.2 Use a client-server architecture

This second design decision ties into the first one, and the fact that we were dealing with activity
datasets, that usually contain a large amount of events. Since pattern mining on large datasets
can have significant requirements in terms of processing power and memory consumption,
being able to delegate this task to a remote server allows the client to focus its resources on
the visualization and exploration process.

1.2.3 Focus on interactions rather than visualization

In a progressive context, extensive work could have been conducted on both the visualization
and the interaction with the algorithm aspects of the system. We were more interested in
exploring the possible interactions between the analyst and the algorithm, which led us to focus
our research on this matter. Doing so, we relied on classical visualizations (essentially timeline-
based, see section 6.3), that we adapted to work in a progressive context.

2https://meltdownattack.com/, archived on 2020/01/03
3https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/, archived on 2019/11/14
4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer,

archived on 2019/11/23

107

https://meltdownattack.com/
https://web.archive.org/web/20200103060839/https://meltdownattack.com/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://web.archive.org/web/20191114020119/https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://web.archive.org/web/20191123052144/https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

1.2.4 Adapt an existing pattern mining algorithm

When considering the pattern mining algorithm that would run within our system, we had the
choice between creating a progressive version of an existing one and designing our own algo-
rithm from the ground up. We decided to adapt an existing algorithm, which was faster than
starting from scratch, thus allowing us to start experimenting with our data more rapidly. In
addition to being faster, this solution also had the benefit to provide us with a reference algo-
rithm that we could use as a comparison for metrics such as execution speed and memory
requirements. The way in which we adapted the algorithm is presented in detail in section 6.5.

Retrospectively, we still believe this was the right choice to make in order to be able to
start experimenting with a working algorithm. However, working within the logic of the non-
progressive implementation made the task of adding the ability to steer the algorithm compli-
cated at times.

1.2.5 Communicate frequent patterns when all occurrences are discovered

Even though any algorithm has to provide intermediate results to be considered progressive,
the rate at which these results are provided can depend on the task at hand and the needs of the
analysis. In PPMT, we made the choice to output a frequent pattern when all its occurrences
have been discovered. When designing our progressive pattern mining algorithm, we used
an existing implementation that outputted frequent patterns at the end of each pattern size
extraction. On large datasets, it had the drawback of presenting hundreds (if not more) of
patterns at once, which can be daunting for the analyst. Presenting batches of frequent patterns
(i.e. outputting them when n frequent patterns have been discovered) could have been possible,
but determining the size of the batches felt rather arbitrary.

Going down to the individual patterns, we could also present a pattern as soon as enough
occurrences have been found to make it frequent, and then update its number of occurrences.
However, waiting for the complete discovery of the occurrences allowed us to have less infor-
mation to update, thus increasing the analyst’s confidence in the displayed numbers since they
know they will not change. An additional argument in favor of our choice is the fact that a single
candidate can be processed rather quickly. As such, showing a number of occurrences for a
fraction of a second and then updating it can be confusing. While sufficiently large datasets
might justify changing our decision, the amount of data needed to do so is most probably well
beyond PPMT’s data management capabilities.

1.2.6 Extract every occurrence, even during a steering

When implementing steering the computation towards a time period or a specific sequence, we
had to choose between two options: extracting occurrences only from the designated steer-

108

6.1. Design process

ing target, or within the entire dataset. While extracting within the steering target seems more
intuitive, this solution leads to some questions. First, how to handle the minimum support
threshold? When dealing with small steering targets (with regards to the complete dataset),
keeping it “as is” reduces (or even removes) the ability to discover frequent patterns, which is
not suitable. One could use a fraction of the support threshold, based on the proportion of
data considered, but this only works under the assumption that the data (and thus the pattern
occurrences) is uniformly distributed, which is not the case in almost any real dataset. Other
questions arose with regards to the output of the mining. For patterns that are frequent, the
system needs to communicate the fact that additional occurrences might exist. Similarly, pat-
terns found to be non-frequent with regards to the steering target might end up being frequent
over the entire dataset.

In PPMT, we opted for the second option. During a steering, the algorithm searches for a
candidate’s occurrences within the steering target. If no occurrences are found, the candidate
is discarded. However, if at least one occurrence is found, the entire dataset is searched
for occurrences. From the analyst’s point of view, the speed at which a single candidate is
processed makes looking for occurrences over the entire data only marginally longer than over
a subset of the data. However, the main benefit of this choice is that it allows us to keep a
constant support threshold and present complete information to the analyst.

1.2.7 Storing frequent patterns and their occurrences on the server

Choosing a client-server architecture raised the question of where frequent patterns and their
occurrences should be stored. Having the complete information stored on the client side would
have put a massive memory load on the analyst’s computer, while only having it on the server
would have required a lot of information transfer between the two parts.

To solve this matter, we consider this information as the combination of two parts, the syntax
data, which is a collection of pattern syntax, and the occurrence data, which contains the details
of the pattern occurrences. The first is more general, requires less memory space, and can be
considered an access point to the other, while the second is more detailed and represents most
of the memory requirements. For these reasons, we decided to keep the complete information
on the server, while only providing the syntax data to the client. If the analyst is interested in
specific patterns, selecting them will trigger a request for the associated occurrences that will
be sent from the server and stored locally.

1.3 The coconotes dataset

During the development of PPMT, we mostly used the coconotes dataset. Originating from a
past project of our research team, it contains the anonymized activity data of students using

109

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

COCoNotes5, a platform that offers video-based education resources. Figure 6.1 illustrates the
video player interface. The left part of the screen consists of two synchronized players, for the
video as well as the supporting slides when available. On the right, the “plan” tab presents
the structure of the video, each slide representing a chapter, allowing one to easily navigate its
content. At any time when watching a video, one can create text annotations to add remarks,
questions or useful additional information that will be linked to the video timestamp at which
they are created. These annotations can then be kept private, or shared publicly with other
users of the platform, and are presented in additional tabs in the right part of the screen.

Figure 6.1: COCoNotes’s video annotation interface.

The dataset itself spans a four months period from September 2016 to January 2017, rep-
resenting 201.000 events, 32 event types and 211 users. Event types range from login and
navigation actions to interactions with the video player (play, pause, change volume, move to
a specific timestamp. . .), and annotation management (create, edit, share. . .) events. Event
types are grouped into several categories, depending on which part of COCoNotes’ user inter-
face triggers them and whether they are recorded by the client (high level) or the server (low
level). Figure 6.2 shows the number of events in each user trace, and figure 6.3 the distribution
of the duration of the users’ traces.

5http://coconotes.comin-ocw.org/

110

http://coconotes.comin-ocw.org/

6.2. Features

Figure 6.2: Number of events in each of the 211 user traces.

Figure 6.3: Distribution of the user traces’ duration (in days).

2 Features

In this section, we introduce the features of PPMT. On a broad scale, our aim was to provide
a tool to allow one to explore activity data with the assistance of a progressive pattern mining
algorithm. To reach this goal, we implemented usual visual data exploration features, alongside
the various components from our interaction framework introduced in section 4.1.

111

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

2.1 Technical features

Exploring raw data. Perhaps the most basic feature of PPMT is to provide access to the raw
content of the dataset, independently of any algorithmic processing. The analyst has access
to both aggregated information (number of events, users. . .) and detailed visualization of the
data within timeline representations. In addition to the individual events, PPMT also represents
the activity sessions within the dataset.

Extracting and exploring episodes from activity data. PPMT provides a progressive pattern
mining algorithm that assists the analyst during the data analysis process. This algorithm
extracts frequent episodes and their occurrences from the dataset, according to the parameters
specified by the analyst. These episodes offer an abstraction of the dataset’s content that the
human can use while exploring data. In order to do so, PPMT allows one to visually explore the
context in which occurrences are found.

Interacting with the pattern mining algorithm. Each of the four interactions we introduced in
our framework presented in section 4.1 is available in PPMT. Besides restarting the algorithm
with different parameter values (A4), the analyst is able to steer the algorithm in three different
ways. Steering towards a time period or towards a specific user will prioritize patterns that occur
within these specific subsets of the dataset (A2), while steering towards an already discovered
pattern will prioritize the mining of patterns that have it as a prefix (A3). When using PPMT,
an analyst can apply modifications to the dataset to integrate previous findings into the data
(A1). Doing so restarts the algorithm on the new data, and any modification can be undone
if needed. The current version of PPMT supports three kinds of data modification: removing
specific event types, removing specific users, and creating a new event type from a pattern. In
this last case, events that are involved in the occurrences of the pattern are replaced by events
of the newly created type.

2.2 Supported analysis tasks

In subsection 5.1.5, we proposed a model for the tasks an analyst can perform when working
with pattern mining techniques. In its current version, PPMT’s support of these tasks is fo-
cused on the elementary ones, as these are the most basic steps that can be performed when
exploring a dataset, on which synoptic tasks rely, making their implementation mandatory.

Direct lookup tasks can be performed through the lists of event types, users and patterns,
as well as the focus view, by selecting the appropriate values for each referrer and exploring
the resulting visualizations.

Inverse lookup tasks are mostly supported, depending on the missing referrers. If the

112

6.3. User interface

sequence or time is unspecified, inverse lookups can be performed the same way than direct
ones, by selecting patterns to display their occurrences within the visualizations. However, if
the pattern referrer is unspecified, there is no efficient way to obtain the task’s target, since
selecting some users and a time-period will not provide the patterns one is interested in. A
simple way to remedy this would be to change the behavior of the pattern list, so that it is
automatically filtered to only display patterns that have occurrences in the part of the dataset
that is shown in the visualizations.

Direct comparison tasks are mostly achieved through visual comparison, using the data
visualizations. However, should one be interested in comparing according to the information
displayed in the various lists (such as the support of the patterns), it is possible to leverage the
filtering and sorting options to do so more efficiently.

Inverse comparison tasks, as they rely on inverse lookups, present the same feasibility. If
the required inverse lookup involves an unspecified sequence or time referrer, one can perform
it and visually compare the visualizations. However, if the pattern referrer is unspecified, the
task’s target cannot be easily obtained.

Relation seeking tasks are for the most part not supported by PPMT, since no way of
specifying a relation (either between characteristics or referrers) are provided. However, should
the relation be one that can be materialized through PPMT’s user interface, then one can look
for its occurrences within the visualizations. An example of such case could be looking for
sequences that start before a specific sequence, achievable by sorting the sequence list by
start time.

While the above paragraphs address how one can perform each type of task on the available
data, the ability to steer the computation provides an efficient mean of making sure that said
available data is as comprehensive as possible. This is especially true for direct tasks (lookup or
comparison), since each referrer can be expressed via a dedicated steering target: sequences
(steering on users), patterns (steering on a prefix) and time (steering on a time period).

With regards to the synoptic tasks, PPMT does not provide specific assistance. To do so would
require a way for the analyst to be able to either specify structures (and then have PPMT output
the corresponding behaviors) or select some data or pattern occurrences that would be used to
construct a behavior (and then have PPMT identify underlying structures). However, one can
still leverage the different visualizations to perform theses tasks “by hand”.

3 User interface

In this section we present the user interface of PPMT, composed of several linked widgets that
are organized in three columns (figure 6.4). The left column contains information about the

113

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

Figure 6.4: PPMT’s interface. The left column is about the dataset. The right column is about the
pattern mining and its output. These elements can be visualized in the graphical views in the middle
column.

selected dataset (A) and the actions that have been performed during its exploration (B). The
column on the right contains information about the progressive pattern mining algorithm, its
current state (G) and the frequent patterns that have been discovered (H). Finally, the middle
column contains timeline-based graphical representations of the data and selected patterns
(C, D, E, F). The following subsections will focus on the different widgets that compose this
interface, introducing them in more details. Illustrations throughout this section showcase data
from the coconotes dataset, described in subsection 6.1.3.

3.1 Dataset-related panels

3.1.1 Trace information

This widget is the first tab in the left column, and is illustrated in figure 6.5. In its upper part,
it provides aggregate information about the dataset that is currently being explored. It displays
the total numbers of events, event types, users and sessions, along with the timestamps of the
first and last events. In most cases, this information will not be frequently needed by the analyst
during their data exploration. It can however provide some context in the early stages of the
work, or when investigating some hypothesis.

The lower part of the tab contains a history of the events related to the analyst’s actions

114

6.3. User interface

Figure 6.5: Information about the dataset and the analysis history.

since she started exploring the current dataset. Each event is a card with a title, a timestamp
and a description that will depend on the kind of event. The history always starts with the
Dataset [X] received event indicating that the client has loaded the complete dataset. From
this, the history will log the following events:

• Algorithm started, with the description containing the value of each parameter.
• Algorithm ended, with the description containing the number of patterns found and the

time it took. Two different events can be encountered:

– Algorithm completed, if the algorithm ran to completion;

– Algorithm interrupted, if it was interrupted by a restart.

• Steering on [...], indicating the start of a steering, with the title indicating the type of

115

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

steering and its target.
• Steering end, with the description indicating the number of patterns discovered during

the steering.
• Data modification, with a different event for each type of modification:

– Event type created: [...], with the title indicating the name of the new event
and the description containing the former pattern that served to create it.

– [X] users removed, with the title indicating the number of users removed and the
description containing the list of these user IDs.

– [X] event types removed, with the title indicating the number of event types re-
moved and the description containing the list of these event types.

• Reset the dataset, when data modifications are reverted to go back to the initial dataset.

To allow an easier understanding of the exploration history, algorithm start and end are
bolded (both the title text and the card border), and events happening during the algorithm
execution are indented. The analysis is also able to show or hide each event description, which
provides a more condensed history when this information is not needed. If the dataset has
been modified, a button is available at the top of the history to revert these changes.

3.1.2 Event type information

This second tab in the left column is illustrated in figure 6.6 and contains a list of all the event
types that exist in the dataset. Each event type has a name, the symbol used to represent
it, a support (the number of times it is encountered in the data), a category (which defines
the symbol’s color) and the number of users that have events of this type in their data. When
available, a description is also provided for each event type, that the analyst can hide to provide
a more compact list. The list can be sorted according to each column by clicking on their
headers, with decreasing support value being the default ordering.

The analyst can click on a row to toggle on or off the highlight of the corresponding event
type in the central visualizations. Highlighted rows are bolded. While hovering over a row,
its background changes to highlight it and a contextual button appears over it on the right,
giving the analyst access to three options: removing all occurrences of this event type from
the dataset, removing all highlighted event types, and removing all non-highlighted event types.
Clicking the button performs the first option. Using any of the options will display a modal
window asking for the analyst’s confirmation, while warning that this will lead to the restart of
the algorithm (figure 6.7).

116

6.3. User interface

Figure 6.6: The list of event types.

Figure 6.7: The modal confirmation window before removing several event types from the data.

3.1.3 Users information

This third tab in the left column is illustrated in figure 6.8 and contains a list of all the users that
exist in the dataset. Each user has an ID, is associated to a number of events, and to the date
of the first and last of these events, the duration between these two dates and the number of
sessions during this time-period. Contrary to the other information, the sessions are not directly
present in the data but derived from it. For a given user, we define a session as a series of
consecutive events of any size, related to the same user, in which the duration that separates
two consecutive events is no longer than an analyst-defined value. Within PPMT, this value is
set at 30 minutes when exploring the COCoNotes dataset, based on existing work on reading
sessions in online courses (Sadallah, Encelle, Maredj, & Prié, 2015). The list can be sorted
according to each column by clicking on their headers, with decreasing number of events being
the default ordering.

Similarly to the event types list, the analyst can click on a row to toggle on or off the highlight

117

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

of the corresponding user in the central visualizations. Highlighted rows are bolded. While
hovering over a row, its background changes to highlight it and two contextual buttons appears
over it on the right. The first allows the analyst to start steering the algorithm on this user, while
the second button provides access to three options: removing all events of this user, removing
all highlighted users, and removing all non-highlighted users. Clicking the button performs
the first option. Using any of the options will display a modal window asking for the analyst’s
confirmation, while highlighting the fact that this will lead to the restart of the algorithm (figure
6.9).

At the top of this widget is a text field that can be used to filter the list. Highlighted users are
always displayed regardless of the current filter, but non-highlighted users are only displayed
if their ID contains the current filter value. While the analyst is typing into the field, a few
auto-completion suggestions are provided, that can either be clicked or navigated using the
keyboard.

Figure 6.8: The user list. Here, users user191, user125, user152, user148 and user201 have been
selected.

Figure 6.9: The modal confirmation window before removing several users from the data.

118

6.3. User interface

3.1.4 Categories information

This fourth tab in the left column is illustrated in figure 6.10. It contains a list of all the categories
of event types present in the dataset, along with the color associated to them. Each color has
two variations, the second one being a faded version of the first. When no particular highlight is
being used, the first variation is used in the graphical representations. When a user and/or an
event type highlight is occurring, highlighted events use the first variation while non-highlighted
ones use the second.

Figure 6.10: The list of event type categories.

3.2 Algorithm and pattern-oriented panels

3.2.1 Default algorithm view

Figure 6.11: The default algorithm view.

Located at the top of the right column, this widget provides information about the pattern
mining algorithm, and is illustrated in figure 6.11. In its left half, it displays its current status, the
number of patterns discovered, the execution time and the value for the various parameters of
the algorithm. The status display is itself made of two information, the current activity and the

119

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

current strategy. Here, activity refers to what pattern size is being investigated, while strategy
can either be “default strategy” or an indication of a steering target (“steering on [. . .]”). The
right half contains a bar chart that presents the number of frequent patterns for each pattern
size. The bar chart uses the following color code:

• A green bar indicates that all the patterns of the corresponding size have been extracted.

• An orange bar indicates that the corresponding size has been investigated during a steer-
ing. It will be colored orange until its completion under the default strategy.

• A blue bar indicates that the corresponding size is the current target of the algorithm,
whether a steering is occurring or not.

The same color code applies to the text that indicates the algorithm’s status, which can take
the following values:

• completed.

• Steering on X , with X being a description of a steering target (either a syntax prefix, a
time period bounds or a user id).

• Working on size n , with n being the currently investigated pattern size.

While this provides a condensed view of the current algorithm state, the analyst can click
anywhere in this area to open the extended algorithm view described in the next paragraph.

3.2.2 Extended algorithm view

Figure 6.12: The extended algorithm view.

120

6.3. User interface

Since it is not always available, this widget is displayed in a modal panel, on top on the rest
of PPMT’s interface. As shown in figure 6.12, all the information found in the default algorithm
view is also presented here. Two graphs are giving indications about the algorithm’s speed
during the last minute, in the form of respectively the number of frequent patterns found per
second and the number of candidates checked per second. The bar chart is integrated into a
table in order to provide additional information. For each pattern size, rather than just showing
the number of frequent patterns, the table includes the number of candidates that need to be
checked and that have already been checked, an indication of progression (with regards to the
number of candidates) and the time the algorithm has spent investigating it. The color code
described in the previous paragraph is also used in this extended view. On the right side of
the widget, the analyst can restart the algorithm with new values for the parameters, which can
be set using four sliders. Clicking anywhere outside the modal panel will close it, allowing the
analyst to go back to the main interface.

3.2.3 Pattern list

Located in the bottom part of the right column, this panel is illustrated in figure 6.13. It consists
of two parts, the list of frequent patterns itself, and the filters that can be applied to it.

The list. The list contains all the frequent patterns with size > 2 that have been discovered and
that pass every filter the analyst have specified. Each row presents a pattern with its name (the
event types that compose its syntax, along with the corresponding list of symbols), its support
(number of occurrences), the number of users that include the pattern in their data, and its size.
The list can be sorted according to each column by clicking on their headers, with increasing
size being the default ordering. This analyst is also able to hide the patterns’ name, showing
only the corresponding sequence of symbols. This provides a more compact list, useful when
considering long patterns or patterns containing event types with a long name.

The analyst can click on a row to toggle on or off the highlight of the corresponding pattern
in the central visualizations. The text in highlighted rows is bolded. While hovering over a row,
its background changes to highlight it and three contextual buttons appear over it on the right
(see the 4th pattern from the top in figure 6.13). The first one highlights all the users whose
data present the pattern, or de-highlights them if they are all already highlighted. The second
button starts a steering whose target will be patterns that have the selected pattern as a prefix.
Finally, the third button is used to modify the dataset by creating a new event type from the
occurrences of the pattern. When the analyst clicks on the button, a modal panel appears,
allowing the analyst to select the name and description of the new event type (figure 6.14). If
they so choose, the analyst can also remove all occurrences of the events types that compose
the selected pattern, rather than just the ones involved in its occurrences.

121

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

Figure 6.13: The list of frequent patterns and the associated filters. Here, the 4th row is being
hovered over.

Figure 6.14: The event type creation modal panel.

The filters. Several filtering options are available above the pattern list, allowing the analyst
to more easily access the patterns that are of interest to her. Two sliders are provided to filter
based on the support and size of the patterns. Both display a bar chart of the current pattern

122

6.3. User interface

frequent patterns based on their respective attribute, that is colored to highlight which patterns
are actually used to build the list. Each slider allows selecting both a minimum and a maximum
value, and their range is updated if needed when new patterns are discovered. Under these
sliders, a text field allows the analyst to filter the list according to the syntax of the patterns, to
only include the ones that include the entered text. Auto completion is offered and suggests
event type names.

While the previously described filters are to be expected from any tool, the top part of the
widget offers other filtering options directly tied to the progressive nature of the algorithm. On
the right, the analyst can switch between considering all patterns or just the ones discovered
during the last steering (or during the current one if on is happening). Hovering over the switch
displays a tooltip indicating the target of said steering. On the left, a button allows to stop
and resume the live update of the pattern list, which will determine whether newly discovered
patterns will be instantly added to the list or not. When the live update is stopped, a button
appears, indicating how many patterns are currently waiting to be added. Clicking on this
button adds them to the list (provided they comply with the other filters) without resuming the
live update. If the analyst goes back to a live update of the list, any “awaiting” pattern is added.
A circle serves as an additional indication of the live update status, being grey when it is paused
and a pulsing green when active.

At the very top of the panel, three numbers provide an indication about the amount of
patterns the analyst is dealing with. From left to right, these are respectively the number of
patterns that pass the current combination of filters (i.e. number of rows in the list), the number
of patterns taken into account to create the pattern list and the number of discovered patterns.
Hovering over them provides this information to the analyst. In practice, the last two numbers
are identical if the live update is on. If it is paused, the difference between them is the number
of patterns waiting to be included in the list.

3.2.4 Selected pattern list

Located between the algorithm state and the pattern list, this panel is presented in figure 6.15.
It provides the same features than the frequent pattern list (without the filter part), but can only
contain up to five patterns that have been selected by the analyst. If it contains at least one, a
“Reset” link is available at the top of the panel to clear the pattern selection.

Similarly to the complete pattern list, hovering over a row changes its background changes
and three contextual buttons appears over it on the right (see the 2nd pattern from the bottom
in figure 6.15). The first one highlights all the users whose data present the pattern, or de-
highlights them if they are all already highlighted. The second button starts a steering whose
target will be patterns that have the selected pattern as a prefix. Finally, the third button is used
to modify the dataset by creating a new event type from the occurrences of the pattern. When

123

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

Figure 6.15: The list of selected patterns.

the analyst clicks on the button, a modal panel appears, allowing the analyst to select the name
and description of the new event type (figure 6.14). If they so choose, the analyst can also
remove all occurrences of the events types that compose the selected pattern, rather than just
the ones involved in its occurrences.

3.3 Visualization-oriented panels

The three panels that compose the central part of PPMT’s interface offer synchronized timelines
that allow the analyst to explore various aspects of the data. While the following paragraphs will
focus on each of these timelines individually, it is important to keep in mind that an important
part of their usefulness during the analysis comes from their synchronicity. It is implemented
through what we call the “focus”, a subpart of the time-period covered by the dataset, which
can be set in the “overview” visualization or by panning and zooming in the timelines. Both the
“all users” and “per user” timelines only cover the time-period defined by the focus.

3.3.1 Summary of highlights and selections

Figure 6.16: Selections and highlights summary.

The top part of the central column displays the number of highlighted event types and users,
along with the number of selected patterns, as shown in figure 6.16. Links are also available to
reset these highlights and selections, rather than doing it element by element. When hovering
over these numbers, a tooltip displays the detailed list of elements. The analyst can click on
these to de-highlight or unselect specific items from this display.

124

6.3. User interface

Figure 6.17: The dataset overview.

3.3.2 Overview

Located at the top of the central column, this widget provides an overview of the dataset. As
illustrated in figure 6.17, it provides a timeline that spans the entire dataset. On top of it is
a selector that the analyst can manipulate (either moving it or resizing it using two handles)
to designate the focus, i.e. the portion of the timeline that will be displayed in the other two
visualizations. By default, the focus is on the entire data. The timeline itself displays a bar chart
of the number of event types, whose granularity will be automatically adjusted based on the
time span of the focus. Above the timeline, the bounds of the focus are displayed alongside the
corresponding time-span. Two buttons are also available, one to reset the focus on the whole
dataset, the other to start steering the algorithm on the current focus.

3.3.3 All users visualization

Figure 6.18: Visualizing aggregated events from the whole dataset.

Located in the central part of the middle column, this panel is illustrated in figures 6.18 and
6.19. From top to bottom, it contains the following three parts: a set of controls, a timeline dis-
playing events and a timeline displaying the occurrences of the selected patterns. The analyst
can adjust the focus by panning and zooming over the timelines, by using the “+” and “-” control
buttons or by clicking the links to the different granularity levels.

Depending on the time period covered by the focus, the events-displaying timeline switches

125

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

Figure 6.19: Visualizing individual events from the whole dataset.

between two modes: an aggregated representation (figure 6.18) and a per-event representa-
tion (figure 6.19). Depending on the dataset, up to five granularity levels are available for the
aggregated representation: per year, per month, per half month, per day and per half day. In
this mode, the representation is a bar chart that reflects the number of events in each aggre-
gate. An option is available in the control area to turn the bars into stacked bars of the different
event type categories. If this option is activated, another option appears that allows the analyst
to switch the Y-axis between an absolute and a relative scale. In the per-event mode, the Y-axis
is dedicated to the event types, following the ordering of the list in the corresponding panel,
and the events are represented in the timeline by their symbol. When patterns are selected,
black lines connect the events that compose their occurrences. If at least one event type is
highlighted, an option is available in the control area to only display the events of a highlighted
type. This allows the analyst to more easily focus on events of interest when needed.

Under the main timeline, a smaller timeline is dedicated to display the occurrences of the
selected patterns. The Y-axis indicates the patterns, with each occurrence being represented
with a horizontal black line going from its start to its end. Contrary to the ones in the main
timeline, these black lines are visible even in aggregated mode to help spot the occurrences
within the data. As such, this visualization can be considered an overview of the selected
patterns’ occurrences.

3.3.4 Per user visualization

Located at the bottom of the middle column, this timeline presents information about the ses-
sions of each user, as illustrated in figure 6.20. The Y-axis consist of a list of users, following
the user list panel’s ordering, and the sessions are displayed as rectangles that span the cor-
responding time period. When patterns are selected by the analyst, the sessions in which their

126

6.3. User interface

Figure 6.20: Visualizing user sessions.

occurrences are found are colored in red to distinguish them from the others, colored in blue.
Highlighted users are also made easier to spot by having the corresponding rows having a
light grey background (figures 6.21 and 6.23). To explore the content of a particular session,
the analyst can click on the associated rectangle to align the focus on the corresponding time
period.

Depending on what the analyst is interested in, a toggle located right above the timeline
offers three different modes. “All users” (figure 6.21) displays every user, which will offer an
overview of the sessions repartition at the cost of any finer detail in any dataset having at least
50 users. “Selected users” (figure 6.22) is similar to the previous option, but restricted to the
currently highlighted users. In this mode, the grey row background is removed since it would be
present for every row. Finally, “Some users” (figure 6.23) displays only fifteen users at a time,
with a slider on the right allowing the analyst to browse the entire list. In this mode, the analyst
is able to display the individual events (either all of them or only the highlighted ones) over the
sessions to explore their content.

Figure 6.21: “All users” view.

127

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

Figure 6.22: “Selected users” view.

Figure 6.23: “Some users” view.

3.3.5 Tooltips

When hovering over certain elements of the “all users” and “per user” visualizations, the analyst
has access to a tooltip that provides additional information about various elements. These
tooltips are illustrated in figure 6.24.

(a) Tooltip for an event bin (b) Tooltip for an event (c) Tooltip for a user session

Figure 6.24: Tooltips available in PPMT.

By default, the tooltip moves with the mouse cursor, however the analyst can click to pre-
vent the tooltip from moving, making it possible to interact with its content. In the “all users”
visualization, tooltips contain information about a specific bin in aggregate mode or about a
single event in event mode. In the “per user” visualization, tooltips present information about

128

6.4. Architecture

the session and the patterns it contains.

3.4 Dataset selection

Figure 6.25: The dataset selection page.

Contrary to all the previous elements that are part of the same page, the dataset selection
illustrated in figure 6.25 is a different page. While not needed for the data analysis work per-
formed with PPMT, it is the first page an analyst sees when starting to use PPMT in its current
implementation. For every dataset on the server, it displays a card that present at least the
dataset name. When available, additional information can include the number of users, events
and event types of the dataset, along with the duration between its first and last events.

4 Architecture

In this section, we present the architecture on which PPMT is built. We first introduce the logic
within PPMT, before focusing on the actual implementation.

4.1 Logical architecture

Our first work on the architecture of a progressive pattern mining system designed to explore
activity data led us to the design presented in figure 6.26. In this workflow, interactions traces
are processed by the progressive pattern mining module to extract patterns, that are sent to

129

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

patterns

patterns

statistical
measures

Modify data

Interaction
Traces

Patterns
+

Measures

Pattern
Search
Engine

Traces + Patterns
Visualization module

Pattern
Manager

patterns
querying

exploration

Pattern
Monitor

pattern
retrieval

OR

unexpected /
salient

patterns

Algorithm
manager

Pattern
assessment

module

Progressive Pattern
Mining module

Steering
request

(1)
Steers

Mining
loop

(2) Resume
previous
analytics

Figure 6.26: Our logical architecture for a progressive pattern mining system.

a pattern manager for storage and to a pattern assessment module to derive statistical mea-
sures, also stored in the pattern manager. While the algorithm keeps running and outputting
patterns, the analyst explores visual representations of the data, patterns and statistical mea-
sures. When necessary, the analyst queries additional patterns from the pattern manager.
Such requests are handled by a pattern search engine, that will produce an answer either by
retrieving already discovered patterns relevant to the query or by steering the pattern mining
algorithm to prioritize the analyst’s request. Independently from this queries, a part of the pat-
tern manager we call the pattern monitor processes the discovered patterns to push additional
patterns to the visualization. The analyst can also request modifications of the data. This pro-
cess is supposed to assist the data exploration by identifying unexpected or salient patterns,
based on their statistical characteristics and the analyst’s analysis behavior. This model is an
improvement over our earlier work on a theoretical architecture for a progressive pattern mining
system (Raveneau, Blanchard, & Prié, 2016), in which the behavior within the Progressive Pat-
tern Mining module was less detailed. This improvement comes from our practical experience
implementing PPMT.

4.2 Implemented architecture

4.2.1 Progressive Visual Analytics architecture

PPMT is built on a client-server architecture, and the implementation for the most part follows
our logical architecture, as illustrated in figure 6.27. Due to our focus on interactions between
the analyst and the algorithm, two elements of the logical model are missing from PPMT: the
pattern assessment module and the pattern monitor. This allowed us to focus more heavily
on the various ways one could steer the algorithm. As explained in our design choices (see
subsection 6.1.2), the visualization and the pattern mining are clearly separated by using a
web-based client in charge of the visualization, while the server performs the progressive pat-

130

6.4. Architecture

patterns

patterns

Interaction
Traces

Patterns
+

Measures

Pattern
Search
Engine

Traces + Patterns
Visualization module

Pattern
Manager

patterns
querying

exploration

pattern
retrieval

OR
Algorithm
manager

Progressive Pattern
Mining module

Steering
request

(1)
Steers

Mining
loop

(2) Resume
previous
analytics

Modify data

Figure 6.27: PPMT’s logical architecture. Yellow sections are part of the client; blue ones are part of
the server.

tern mining and provides the data, that is stored on both side. While the Visualization and
Progressive Pattern Mining modules are faithful to our theoretical logical model, the pattern
manager, on the other hand, is not as clearly defined. The list of frequent patterns is stored on
both sides, with the server storing the complete occurrence data, while the client only knows
the occurrences of the patterns requested by the analyst.

4.2.2 Server architecture

While the previous sub subsection details the architecture that a single Progressive Visual
Analytics process relies upon (i.e. having a single client communicate with the server), it ignores
some components of PPMT’s server-side that allow it to concurrently handle several clients.
The first is the global dataset manager, which manages the copy of the data available to every
client. To reduce the memory needs, only one copy of each available dataset exists, that
can be read by several clients. It is only when one of them wants to modify the data that
a copy of the dataset is created, on which the requested modifications are performed. The
second component is the client manager, whose role is to manage the various instances of
the previously described Progressive Visual Analytics architecture, one for each client. An
illustration of these two components’ role is available in figure 6.28.

4.2.3 Communicating with the algorithm

With the exception of the initial data transfer to the client that uses an HTTP request, every
communication between the client and the server is done using websockets, allowing both
sides to initiate a communication when needed.

When the server receives a message, it dispatches it to one of two modules, depending on
the content. Requests to modify the data (or to undo a modification) are sent to the dataset
manager module, in order to create (or update) a dedicated copy of the dataset to perform

131

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

Server

... ...

Client
manager

Dataset
manager

Interaction
Traces

Interaction
Traces

Modify data

Modify data

Figure 6.28: PPMT’s server architecture.

the requested modifications. Other requests will consist of communication between the analyst
and the algorithm, and are sent via the client manager to the relevant algorithm manager that
registers them (more on how steering is handled in subsection 6.5.2). Regularly, the algorithm
will also send information about its progress (number of candidates generated and verified) to
the algorithm manager that will then forward it to the client.

Once a valid dataset has been selected, the server starts sending the data to the client.
When this transfer is complete, the pattern mining algorithm starts running with its default pa-
rameters, and any future communication from the client to the server will either be requests to
interact with the algorithm or requests for the detailed occurrences of specific patterns. In the
other direction, messages from the server side will contain newly discovered frequent patterns,
information about the algorithm’s state and progression, and answers to the client requests.

5 Progressive pattern mining in PPMT

In this section, we focus on the algorithm that performs the pattern mining task in PPMT. We
first present its design and implementation process, detailing the modifications we made to turn
an existing implementation of the GSP algorithm into a progressive episode mining algorithm.
While previous sections introduced the various steering types that are available in PPMT, the
second subsection offers a detailed presentation of their implementation within the algorithm.
In the third subsection, we compare our algorithm with the one from Stolper et al. (2014) that
they used to illustrate the paradigm of Progressive Visual Analytics.

132

6.5. Progressive pattern mining in PPMT

5.1 Design and implementation of the algorithm

When designing PPMT, we decided not to develop a new algorithm from scratch, allowing us
to use existing implementations. Following our G1 guideline (“Extract episodes rather than
sequential patterns”, see section 5.2), we were looking for an episode mining algorithm, but
no implementation of such algorithm was available at the time (in 2017). This is no longer the
case, some being available since June 2018 in the SPMF library6 (Fournier-Viger et al., 2016).
We were looking for a well-known algorithm, and GSP (Srikant & Agrawal, 1996) was a good
candidate. It is one of the first sequential pattern mining algorithms to have been created, and
has served as a basis for many of the following ones. It also uses fairly simple data structures,
which makes future modifications easier. Finally, it uses a breadth-first Apriori-like strategy,
thus fulfilling our G3 guideline. As for the existing implementation, we used the one from SPMF.
The following paragraphs describe the modifications we made to the SPMF implementation to
make it progressive and compliant with our guidelines.

Extracting episodes rather than sequential patterns, and removing event sets mining.
Since GSP is a sequential pattern mining algorithm, we needed to change its behavior to ex-
tract episodes instead. While GSP only keeps track of the sequences in which a pattern is
found, we modified this behavior to explore the entire sequences, saving every occurrence
found during the process. Doing so, we followed our first two guidelines (“G1: extract episodes”
and “G2: save occurrences”). In order to better leverage the temporal dimension of our data,
we decided to focus on serial episodes (see subsection 3.1.3). To do so, we had to modify the
GSP implementation to use a data representation in the form of sequences of events rather
than sequences of event sets.

Using an absolute support measure. In the SPMF implementation, GSP determines if a
pattern is frequent or not based on a relative support measure expressing the idea that the
pattern is found in at least X% of the sequences. While this can be relevant when working
with sequential patterns, it became meaningless after moving to episode mining. To solve this
problem, we changed the support measure to use the total number of occurrences, regardless
of the number of sequences containing them.

Providing intermediate results. The SPMF implementation of GSP provides a parameter
that determines whether the discovered frequent patterns are returned at the end of the com-
putation, or at the end of the mining of each pattern size. While this second option technically
provides intermediate results, any sufficiently large dataset will have every output take time and

6http://www.philippe-fournier-viger.com/spmf/

133

http://www.philippe-fournier-viger.com/spmf/

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

present the analyst with large numbers of patterns. To make PPMT more interactive and less
cluttered, we decided to output every frequent pattern when all of its occurrences are discov-
ered.

Providing additional parameters. The GSP implementation only allows two parameters, the
minimum support (minsup) threshold to consider a pattern as frequent, and the maximum
length (maxlen) beyond which patterns contain too many events to be interesting. As explained
previously, we turned minsup from a relative to an absolute value, and added the following
parameters:

• Minimum and maximum gap (see subsection 3.1.4.2) control the number of events al-
lowed to be found between events forming a pattern occurrence, while not being part of
the pattern. This provides more control over what one can consider “noise” allowed in
the pattern occurrences. This constraint is verified during the mining process, when the
algorithm is working on identifying the occurrences of a candidate pattern.

• Maximum duration (see span in subsection 3.1.4.2) of a pattern occurrence, in millisec-
onds. This effectively acts as the time window constraint that is often found in episode
mining. This constraint is verified during the mining process, once a potential occurrence
that complies with the gap constraints has been found.

Adding steering vectors. To make our algorithm completely progressive, and compliant with
our fourth guideline (“G4: Offer steering on patterns, sequences and time”), we added three
ways in which an analyst could be able to steer its computation. As explained in sections 6.2
and 6.3, steering is possible over specific sequences, over specific time periods and towards
specific pattern prefixes. The following subsection provides a more detailed description of their
implementations.

Provide feedback during the computation. To comply with our fifth guideline (“G5: provide
information on the algorithm activity”), we made the algorithm output some information about
its inner workings in addition to the frequent patterns. This happens for the following events:

• Start of a new steering, along with its target.
• End of a steering, along with the number of frequent patterns that have been found during

the steering.
• Start of the extraction of a new pattern size, along with the number of candidates that

have been generated.
• Every time a given number of candidates have been explored. This provides information

about the algorithm’s progression, even if no new frequent patterns are discovered.

134

6.5. Progressive pattern mining in PPMT

5.2 Steering the algorithm

In order to comply with our G4 guideline for progressive pattern mining algorithms, PPMT allows
the analyst to steer the pattern extraction towards specific sequences, time periods and pattern
syntaxes.

Within PPMT, steering towards a pattern syntax can be done by specifying an already dis-
covered pattern, thus prioritizing the search for patterns that have it as a prefix. From an
algorithm standpoint, it is the easiest steering form to implement. When a new candidate is se-
lected, its syntax is compared to the prefix. If it complies with the steering target, the algorithm
looks for occurrences as if no steering was happening. Otherwise, the pattern is discarded and
the algorithm will go back to it once the steering is complete.

Steering towards a time period or a sequence is performed differently, since knowing the
candidate syntax is no longer enough to determine whether it complies with the current target or
not. Under such steering, verifying a candidate starts with the algorithm scanning the steering
target for occurrences of the candidate pattern. If none is found, the candidate is discarded. If
at least one occurrence is discovered, the algorithm continues the occurrence search over the
entire data, as if no particular steering was occurring.

To illustrate this process, let’s consider the sequences in figure 6.29, when a time steering
targeting the time period between t6 and t11 occurs at the start of the mining process. Using
a maximum gap of 0 and a minimum support of 5, events of type A and B are both frequent,
which leaves us with four candidates of size 2 to look for: <A;A>, <A;B>, <B;A> and <B;B>. The
algorithms starts with candidate <A;A>, focusing on the steering target, and finds one occur-
rence (AA1). Since the candidate is present within the steering target, the search for additional
occurrences of the candidate is performed on the whole dataset, ending up with two occur-
rences. The candidate is thus declared infrequent, and the algorithm continues with the next
candidate, <A;B>. Looking at the steering target, two occurrences of <A;B> are found (AB2 and
AB5), triggering the search over the complete dataset that leads to five occurrences, thus val-
idating <A;B> as a frequent pattern. The next candidate, <B;A>, is found two times within the
steering target (BA2 and BA3), which starts the mining over the whole dataset. Since five occur-
rences of <B;A> are found, it is validated as a frequent pattern. The algorithms then continues
with the last candidate, <B;B>, but does not find any occurrence within the steering target. The
candidate is thus discarded for the current steering, regardless of how many occurrences ex-
ist in the data7. The next step is to generate candidates of size 3, and continue this process
until no frequent patterns are found. At this point, the steering ends, and the algorithm goes
back to check the candidates that have been discarded during the process. In this case, this
means only the candidate <B;B>, since <A;A> has been considered infrequent after a search
for occurrences over the complete data, not just within the steering target.

7In fact, five occurrences of <B;B> can be found in the complete data, making it a frequent pattern.

135

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

t10 t15
S1

B B A
t1 t5

AA

t10 t15
S2

B B A
t1 t5

t10 t15
S3

BB A B
t1 t5

Steering target

B A A B

A B

BB A

B

AB1 BA1 AB2 BA2 AA1 AB3

AB4AA2BA3

BA4 AB5 BA5

BB1

BB2 BB3

BB4 BB5

Figure 6.29: An example dataset containing 3 event sequences. Occurrences of candidate pat-
terns are indicated by accolades above the sequences.

An important thing to note is that only one steering can be happening at a given time. We made
this choice to work with simple steering options, even though one could consider steering the
algorithm towards a combination of these criterions (for example, towards a prefix in a specific
time period). In the current implementation, a steering request from the client is saved as a
“pending” steering. Every time the mining algorithm is done extracting the occurrences of a
candidate pattern, and before moving on to the next candidate, it checks if there is a pending
steering. If it is indeed the case, it becomes the current steering, with its target being set
accordingly. Should a steering be requested when one is already occurring, the previous one
will be cancelled and the algorithm will start steering towards the new target.

We implement steering using the algorithm manager module (see subsection 6.4.2). Before
the algorithm starts processing a new candidate, a verification is made to see if a steering has
been requested since the previous check. If it is the case, the current state of the pattern search
(the current size and the list of unverified candidates) is saved, and the candidate verification
continues according to the required steering, as described in the previous paragraphs. During
the steering, since our knowledge about frequent patterns of a given size is incomplete, candi-
dates of size n are no longer obtained by combining frequent patterns of size n − 1. Instead,
candidates of size n − 1 are combined with the frequent event types to generate the size n

candidates. When the steering has completed, the previously saved state of the pattern search
is loaded, information about the frequent patterns found during the steering is added to it, and
the default strategy resumes from this point.

136

6.5. Progressive pattern mining in PPMT

5.3 The algorithm

The progressive sequential pattern mining algorithm within PPMT uses the following logic:

initialize frequentSet with the frequent items types;
lastSizeCompleted← 1;
lastF requentSetCompleted← frequentSet;
currentSize← 1;
levelEndedW ithNoCandidate← false;
/* Loop until the default strategy (i.e. without steering) has completed for all pattern sizes */
while lastSizeCompleted < maxSize do

noCandidateF ound← false;
noF requentCandidate← false;
steeringHasOccurred← false;
/* Main mining loop, each pass extracts frequent patterns of size currentSize */
while frequentSet is not empty AND currentSize < maxSize do

increment currentSize;
notify the client that the mining of a new pattern size begins;
if steeringIsOccurring then

candidateSet← generateCandidatesByCombination();
steeringHasOccurred← true;

else
candidateSet← generateCandidatesFromFrequentSet();

if candidateSet is empty then
levelEndedW ithNoCandidate← true;
noCandidateF ound← true;
break;

notify the client that candidates have been generated;
empty frequentSet;
/* Check every candidate to see if they are frequent or not */
foreach candidate : candidateSet do

notify the client that a new candidate is being checked;
if candidate is already a known frequent pattern then

/* Can happen if the pattern has been found during a previous steering */
add candidate to frequentSet;

else
if steeringIsRequested then

steeringHasOccurred← true;
steeringIsOccurring ← true;
notify the client that a steering starts;

if steeringIsOccurring then
validCandidate← checkCandidateWithinSteeringTarget();

if validCandidate OR not steeringIsOccurring then
extract occurrences of candidate from the data;
if support of candidate ≥ minSupport then

add candidate to frequentSet;
save occurrences of candidate;
notify the client that candidate is a frequent pattern;

137

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

continuation of the first while loop
continuation of the main mining loop

/* Exit the main mining loop if no frequent pattern of size currentSize has been found */
if frequentSet is empty then

noF requentCandidate← true;
break;

/* Only consider patterns of size currentSize as fully extracted if no steering has
occurred */

if not steeringHasOccurred then
lastSizeCompleted = currentSize;
lastFrequentSetCompleted = frequentSet;
notify the client that patterns of size currentSize have been fully mined;

if noCandidateF ound OR noF requentCandidate then
if steeringHasOccurred then

/* The main mining loop ended and a steering occurred, we go back to the last pattern
size completed with the default strategy */

currentSize← lastSizeCompleted;
frequentSet← lastF requentSetCompleted;
notify the client that a steering has ended;
steeringHasOccured← false;

else
/* The main mining loop ended without a steering occurring, all the frequent patterns

have been found */
notify the client that patterns of size currentSize have been fully mined;
break;

Within this algorithm, we refer to three particular functions. During the default strategy,
generateCandidatesFromFrequentSet generates new candidate patterns of size k by combin-
ing frequent patterns of size k − 1, as done in the GSP algorithm (Srikant & Agrawal, 1996).
This candidate generation process limits the number of candidates that will end up being in-
frequent, but requires that all patterns of size k − 1 have been discovered. Since this is not
guaranteed during a steering, generateCandidatesByCombination generates new candidates
of size k by extending frequent patterns of size k − 1 with the frequent event types. Finally,
checkCandidateWithinSteeringTarget is used to verify that a given candidate complies with
the current steering target. As explained in subsection 6.5.2, this can be done by reading the
candidate syntax in the case of a steering on pattern, or by reading a subpart of the data in the
case of a steering on sequence or time.

5.4 Comparison with existing Progressive Pattern Mining algorithms

5.4.1 Comparison with Stolper et al. (2014)’s algorithm

When considering the existing literature, Stolper et al. (2014)’s work is the first to propose a
progressive pattern mining algorithm, and our algorithm share some similarities with it. Both
use a breadth-first Apriori like mining strategy, even though we started from an existing breadth-
first algorithm (GSP) while they modified SPAM, a depth-first algorithm. Both implementations
allow the analyst to steer the computation towards a given pattern prefix, but Stolper et al. also
provide the ability to forbid a specific prefix.

138

6.6. Evaluations

While Stolper et al. used their algorithm to illustrate the principles of Progressive Visual
Analytics, our focus was on creating an algorithm that could be used within a system that
supports not just pattern exploration, but also data exploration. This important distinction is the
reason for the two main differences between our algorithm and Stolper et al.’s. First, we provide
additional steering options, allowing one to target specific time periods and sequences, thus
putting constraints on the data and not on the patterns. Secondly, we extract episodes rather
than sequential patterns, thus providing more information about when the patterns occur, and
the relevant context.

5.4.2 Comparison with Servan-Schreiber et al. (2018)’s algorithm

Servan-Schreiber et al. (2018) propose ProSecCo, a progressive frequent pattern mining algo-
rithm. The algorithm processes data by chunks, returning an increasingly better approximation
of the list of frequent patterns after each chunk. While our algorithm is derived from GSP, ProS-
ecCo is not a modification of an existing non-progressive algorithm, even though it uses the
non-progressive PrefixSpan algorithm (Pei et al., 2001) to handle the first chunk of data.

It should be noted that even though the authors describe ProSecCo as a progressive algo-
rithm, they do not provide any way to interact with its execution. Furthermore, their implemen-
tation was only used to assess the algorithm’s performances compared to other pattern mining
algorithms, not to conduct an actual data analysis.

6 Evaluations

In order to conduct a thorough evaluation of our Progressive Visual Analytics system, we de-
cided to focus on three different aspects. The first is an evaluations of PPMT’s compliance
with existing recommendations for building Progressive Visual Analytics systems, by reviewing
each existing recommendation and discussing its implementation within our tool. The second
is about the performances of the underlying progressive algorithm, by observing the impact
of progressiveness on the algorithm’s performances using different configurations. Finally, the
third aspect is PPMT’s usefulness to an analyst exploring a dataset, for which we conducted a
user study. In this section, we relate the first two of these evaluations, while the last one is the
focus of the next chapter.

6.1 Compliance with existing recommendations

In its current version, PPMT fully complies with 13 out of 18 of Badam et al. (2017)’s recom-
mendations for the design of Progressive Visual Analytics systems. Of the remaining 5, 2 of
them are partially implemented, and the last three are not, because we felt that they were not
important for our use case. In the next paragraphs, we provide a more detailed explanation for

139

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

each of the recommendations, while table 6.1 provides an overview of PPMT’s compliance with
them.

Table 6.1: Compliance of PPMT with existing requirements for the design of Progressive Visual
Analytics systems. Requirements are either fully (X), partially (X) or not (×) implemented.

Requirements In PPMT
R1: Meaningful partial results X
R2: Structure-preserving intermediate results X
R3: Retaining cognitive workflow on updates X
R4: Minimized distraction during updates X
R5: Cues for new results X
R6: Aggregated information X
R7: Uncertainty X
R8: Provenance information on demand X
R9: Aliveness X
R10: Absolute progress X
R11: Relative progress X
R12: Full interactivity X
R13: Support two modes: constant update and on-demand refresh X
R14: Steer results X
R15: Cancellation ×
R16: Prioritization X
R17: Provide similarity anchors in complex visualizations ×
R18: Consistently offer quality measures ×

6.1.1 Fully implemented recommendations (13/18)

Meaningful (R1) and structure-preserving (R2) partial results. Working with patterns is
enough to fulfill these two recommendations, since “results” are the patterns and their occur-
rences. This ensures a common structure since occurrences always are a series of event types.
Each occurrence is also meaningful, in that it describes a piece of data that can be related to a
behavior (in the sense of a sequence of actions).

Retaining cognitive workflow (R3) and minimizing distractions (R4) on updates. In PPMT,
updates happen when a new frequent pattern is discovered and received by the client. More
so, these updates only involve updating the display of the number of discovered patterns and
adding the pattern to the lists of patterns, either on the side or in some of the tooltips, since only
selected patterns have their occurrences displayed in the central timeline. As such, distractions
are minimized with regards to most of the user interface. Should one be focusing on the patterns
lists, it is possible to reduce these distractions even more in two ways: filtering the patterns to

140

6.6. Evaluations

only display the ones the analyst is interested in, and pausing the automatic addition of newly
discovered patterns to the list.

Support two modes: on-demand refresh and constant update (R13). As explained in the
previous paragraph, the analyst is able to toggle on or off the constant update of the pattern
list. This allows her to choose between having the more up-to-date information or having a
stable list, should she want to explore its content. When the constant update is toggled off, the
number of patterns discovered but not added to the list is displayed, and the analyst can either
include these patterns into the list or resume the constant update (which also adds the missing
patterns into the list).

Cues for new results (R5) and aggregated information (R6). PPMT presents aggregated
information about the frequent patterns in two ways. The first is by displaying the number of
discovered patterns, either as a whole (in total and in the pattern list, both before and after the
application of filters) or for each pattern size (labels in the bar chart in the top right). The second
way of presenting aggregates are the bar charts themselves, mainly the one that represents the
number of patterns of each size (both in the top right and above the pattern size slider). Another
bar chart is available above the pattern support slider, however the reduced size of this element
and the large scale it requires can quickly make it too small to be noticeable, depending on the
dataset. When new results are available, these aggregates are updated to provide a cue to the
analyst.

Uncertainty (R7). The only aspect of PPMT that presents the analyst with uncertain results
is the bar chart that shows how many candidates have to be verified for a given pattern size.
More specifically, when performing a steering, the candidates are generated within the bounds
of its target. While this provides an indication of the remaining “in steering” work, additional
candidates can be generated later, when the algorithm goes back to its default strategy (or
during other steering requests). To communicate this information to the analyst, we use a
color code in our bar chart that echoes the color of the algorithm’s current status display. For
a given pattern size, green means that the information is complete and nothing more can be
discovered, while orange means that the information presented comes from a steering, thus
possibly being incomplete. Regardless of whether a steering is occurring or not, the blue color
indicates the pattern size the algorithm is currently working on.

Aliveness (R9). The algorithm’s aliveness is communicated by displaying the elapsed time
since the start of its execution, that will remain constant if the algorithm has ended. The ex-

141

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

panded algorithm state view also presents two graphs that respectively indicate the number of
frequent patterns found per second and the number of candidates checked per second, thus
providing the analyst with a rough estimate of the algorithm’s “speed”. However, these metrics
need to be considered as cues rather than absolute truths, since not finding any pattern nor
checking any candidate for a few seconds could indicate that one particular candidate takes
several seconds to be checked (given sufficiently large data). Another major indicator of the
algorithm’s aliveness is the display of its current strategy, which can be either “default strategy”
or “steering on [steering target]” if the algorithm is running, or “not running” when it is not.

Full interactivity (R12). PPMT provides full interactivity with the discovered patterns by al-
lowing the analyst to sort, filter and highlight them. These options are also available for the
underlying data that can be sorted, filtered and highlighted based on the user and event type
properties.

Steer results (R14) and prioritization (R16). The analyst is able to interact with the algorithm
in multiple ways. While it can be restarted using new parameter values, the most interesting
interactions with regards to these recommendations are the steering options. The analyst can
prioritize the pattern mining towards three types of target: a requested prefix for the pattern syn-
tax, a time period where the patterns must be found, and a user sequence where the patterns
must be found.

Provenance information on demand (R8). Frequent patterns discovered by the algorithm
can either be discovered by the default strategy or during a steering. At any time, the analyst
can see which of these two states the algorithm is in in the top right part, which provides a
clue for the provenance of future patterns. Once a pattern is known, no distinction is made
between “how” they were extracted. However, the analyst is able filter the list of patterns to only
show patterns discovered during the current steering (or during the last one if the algorithm is
in the default state). As explained in section 6.2, this exception comes from the reasoning that,
since requesting a steering is a conscious action from the analyst, it can indicate an interest
in the patterns that will result from it. As such, providing an easier access to these patterns is
supposed to help the analyst with her current goals and interests.

6.1.2 Partially implemented recommendations (2/18)

Absolute (R10) and relative (R11) progress. The algorithm’s absolute progress is commu-
nicated to the analyst in the form of the number of discovered patterns (both in total and for
each pattern size) and a display the elapsed time since it started running. Relative progress

142

6.6. Evaluations

is provided in the extended algorithm view, where the number of checked candidates and the
total number of candidates is displayed for each already started pattern size. While summing
up these values could provide some insight about the remaining work the algorithm has to per-
form, it is possible for larger pattern sizes to yield frequent patterns. As such, the analyst has no
way to know if she sees all the pattern sizes. Providing a relative progress of the overall algo-
rithm would require building an estimate of either the number of candidates or of the remaining
execution time, neither of which is easily done (if at all possible). The maximum number of
patterns is known due to its combinatorial nature, but the real number of candidates is always
far lower, making its display irrelevant and misleading. As for an estimate of the remaining time,
the speed at which candidates are verified depends on the data and varies from candidate to
candidate, which would most certainly lead to a incorrect estimate.

6.1.3 Recommendations not implemented (3/18)

Provide similarity anchors in complex visualizations (R17). Due to our focus on interactions
between the algorithm and the analyst, we used timeline-based visualization to display the data
and patterns. Our timelines are displayed in a vertical stack, and we made sure that the x-
axis, that represents time, is always the same across all of them. Since these types of data
visualization are not complex, we did not feel the need for similarity anchors that would allow
one to follow data between different timelines beyond these synchronized axes.

Consistently offer quality measures (R18). Quality measures are supposed to provide the
analyst information about the uncertainty that may occur in the data representations. However,
PPMT represents information without uncertainty. All the data is available and displayed right
from the start, and patterns are either unknown (thus not displayed) or known to be frequent
once all of their occurrences have been discovered. As such, we did not feel the need for such
quality measures.

Cancellation (R15). Being able to cancel the algorithm can be useful if one knows that ad-
ditional results from the algorithm will not be needed, either because the already available
information is enough for the task at hand, or because it is clear that future information will not
be valuable. In such cases, cancelling the algorithm prevents the analyst from being disturbed
or distracted by unnecessary visual updates. In PPMT, discovering more patterns do not clutter
the visualization since they are not automatically displayed. Should one be bothered by their
addition to the pattern list, it is possible to stop the constant update of the list by the click of a
button, essentially cancelling the algorithm from the point of view of the analyst. Due to this,
we did not feel that providing a way to cancel the algorithm was necessary.

143

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

6.2 Performances of a progressive pattern mining algorithm derived from an
existing algorithm

Here we present the second evaluation we conducted, aiming at studying the impact of progres-
siveness on an algorithm. Since providing intermediate results and offering steering options is
additional work compared to a non-progressive version of the algorithm, we were interested in
what could be named the “cost of progressiveness” was. We first present our protocol, before
presenting the results and discussing them.

6.2.1 Protocol

To explore the impact of progressiveness on an algorithm, we wanted to take advantage of the
fact that our algorithm was derived from a non-progressive one. This provides us with a base-
line, against which we can compare several strategies by introducing variations on the progres-
sive aspects. While we expected the additional work induced by the progressive features, the
main uncertainty was the impact that performing a steering would have on the computation.
We ran and compared the following four configurations:

1. The GSP implementation from SPMF, only modified to extract episodes rather than se-
quential patterns

2. Our progressive algorithm derived from GSP, without performing any steering

3. Our progressive algorithm derived from GSP, while performing syntax steering

4. Our progressive algorithm derived from GSP, while performing time steering

In all configurations, we store both the frequent patterns and their occurrences. We decided
not to add a configuration where our algorithm would perform user steering due to its similarity
with the time steering one, as explained in subsection 6.5.2. In configurations 3 and 4, steering
was performed on a given pattern or time-period, once for every pattern size, which amounts to
up to 15 steering phases per execution. Considering that an execution takes between 3 and 20
minutes, we believe that it will allow us to highlight any impact that steering could have on the
algorithm, while gaining insights about the performances between the different configurations.

We used the coconotes dataset, presented in subsection 6.1.3. It consists of traces of
students using COCoNotes8, totaling 201 000 events, 32 event types and 211 users over a
four months period from September 2016 to January 2017. Regarding the parameter values,
we kept a constant gap (mingap = 0, maxgap = 2), maximum size (maxsize = 20) and maxi-
mum duration (maxduration = 30s), but considered three scenarios by using different support
thresholds:

8https://coconotes.comin-ocw.org/

144

https://coconotes.comin-ocw.org/

6.6. Evaluations

1. minsup = 150, which led to 3492 frequent patterns

2. minsup = 50, which led to 21731 frequent patterns

3. minsup = 30, which led to 49121 frequent patterns

Each configuration ran each scenario 20 times on a single dedicated CPU core. We mea-
sured the CPU time and maximum memory usage needed to extract all the patterns from the
dataset using the debug tools provided with SPMF’s GSP implementation.

6.2.2 Results and discussion

Figure 6.30: Results of the comparison between the different algorithms, regarding the CPU
time necessary to discover every pattern.

Figure 6.30 presents the average time (in seconds) that each configuration needed to com-
plete the different scenarios. Overall, the relation between the configurations is the same from
one scenario to another, and was as we expected. The non-progressive algorithm is the fastest,
followed by the progressive configuration without steering. This proximity can be explained by
the fact that as long as no steering is performed, the progressive version is essentially the
same as the non-progressive one, only adding a check for a pending steering request when
switching to a new candidate. Having steering on syntax be faster than steering on time was
also expected based on their respective implementation, as explained in subsection 6.5.2. A
final remark on execution time is that while the difference is relatively small in scenario 1, the
gap between the configurations increases when the parameters are relaxed to obtain more

145

Part II, Chapter 6 – PPMT: a Progressive Pattern Mining Tool to explore activity data

Figure 6.31: Results of the comparison between the different algorithms, regarding the max-
imum memory usage to discover every pattern. Results are missing for the third configuration,
due to a failure of the memory-measuring tools.

patterns. As such, experimenting with even larger scenarios could be interesting, to see if our
observations are still valid.

With regards to maximum memory usage, the results are presented in figure 6.31. Our
main takeaway is that the non-progressive algorithm uses more memory, while the three steer-
ing variants do not show any meaningful variation. This was the result we expected, since the
non-progressive algorithm has to maintain the full memory of occurrences until the end of its
execution, while the progressive ones can remove parts of it once they have been outputted.
However, when taking into account a complete data analysis system, patterns need to be mem-
orized somewhere else to be leveraged. As such, while progressiveness can be more memory
efficient if one only wants to output a list of pattern, an interactive environment will still require
the necessary memory space in another part of the system.

This experiment allowed us to investigate the impact on the system’s resources of a pro-
gressive algorithm. Results ended up confirming our predictions, highlighting the fact that the
ability to steer the algorithm can have a rather significant impact memory wise. It should how-
ever be noted that we did not go out of our way to optimize our algorithm, and had to work
within the limits of the existing implementation we used as a basis. As such, this experiment
could benefit from being performed with a more carefully designed progressive algorithm.

146

6.7. Conclusion

7 Conclusion

In this chapter, we presented the practical work we conducted while implementing PPMT, a
Progressive Pattern Mining Tool designed to explore activity data. As explained in the first
section about our design process, it covers a two-year timeframe and constitutes an important
part of our study of interaction between an analyst and a progressive algorithm.

Implementing PPMT allowed us to put our theoretical propositions in practice and experi-
ment with them. At the same time, it provided us with a first-hand experience about the design
and implementation of a progressive algorithm. In its current version, it offers the usual fea-
tures one can expect from a data visualization tool, such as being able to visually represent
the dataset and explore it by panning and zooming, adapted to a context where additional in-
formation can be provided and requested through a progressive algorithm. Several ways to
interact with the algorithm are implemented, that cover every case of the interaction framework
we proposed in section 4.1. This allowed us to use it to conduct user studies that are described
in more details in the next chapter, in order to receive feedback about our work and to observe
how real users were interacting with such system.

147

CHAPTER 7

COMPARING THE EFFECT OF VARIOUS

PROGRESSIVE INTERACTIONS ON DATA

ANALYSIS TASKS

After the implementation of PPMT, the two evaluations presented in the previous chapter (see
section 6.6) were intended to confirm its compliance with existing guidelines for the design of
such system, and the effectiveness of the underlying Progressive Pattern Mining1 algorithm.
Here we present the third evaluation we conducted using PPMT, which targets the interest-
ingness of the tool itself, from the point of view of a human analyst working with data. This
constitutes our fourth major contribution.

4

7

6

5

C1. A study on interaction within a progressive process

C2. A clarification of the process of Progressive Visual
 Analytics, with regards to the role of the algorithm
 in the process

C3. PPMT, a progressive pattern mining system

C4. A user experiment focused on the impact of the
 interactions between the analyst and the algorithm
 on a progressive analysis process

C5. A data and task model for an analyst exploring
 temporal data with patterns, specialized from the
 general model of Andrienko and Andrienko (2006)

C6. A set of five guidelines for the design of a progressive
 algorithm for pattern mining in sequences

Interaction in Progressive Visual Analytics

Towards Progressive Pattern Mining

PPMT: A Progressive Pattern Mining
Tool to explore activity data

Comparing the effect of various progressive
interactions on data analysis tasks

ChaptersContributions

Our aim was to study the interactions between the analyst and a progressive algorithm,
since we concluded our review of the literature by highlighting the fact that no such review
existed. In this evaluation, our focus was the interaction between the analyst and the algorithm,

1As explained in section 6.2, PPMT only supports episode mining, in accordance with our G1 guideline for
Progressive Pattern Mining algorithms (see section 5.2). As such, in this chapter the terms “pattern” and “sequential
pattern” refer to episodes

149

Part II, Chapter 7 – Comparing the effect of various progressive interactions on data analysis tasks

not between the analyst and the available visualization. For this reason, this experiment was
designed with the framework for interactions we presented in subsection 4.1.1 in mind, and we
observed the impact these actions can have on the analysis process.

The content of this chapter extends the results we provide in Raveneau et al. (2018), since
the experiment was still ongoing at the time of our publication. The experiment protocol did not
change, although our article is focused on a subpart of the questions and was based on the
answers of the 14 participants we had at the time. We first present our protocol, before going
over the results and discussing them.

1 Material and protocol

1.1 Experiment material

To conduct this experiment, we used two versions of PPMT:

1. The complete system, as described in the previous chapter;

2. The complete system stripped of its steering capabilities.

We used the coconotes dataset, described in subsection 6.1.3. It contains the anonymized
activity data of students using the COCoNotes2 video annotation platform. It spans a four
months period from September 2016 to January 2017, totaling 201.000 events, 32 event types
and 211 users. Event types range from login and navigation actions to interactions with the
video player (play, pause, change volume, move to a specific timestamp. . .), and annotation
management (create, edit, share. . .) events.

1.2 Experiment protocol

Evaluating PPMT’s ability to support an exploratory data analysis process would have required
several people interested in exploring the dataset over a long period of time. Since such people
were not available, and considering that an exploratory analysis alternates between exploration
phases and verification of hypotheses, we decided to focus on this second aspect of the data
analysis. To do so, we selected specific questions that an analyst may end up asking them-
selves during an analysis, and asked participants to answer them.

We recruited 23 participants, 18 men and 5 women, between 20 and 48 years old (age =
25.2; σ = 7.05), that were all familiar with data analysis. We distributed them between two
groups:

• The steering group, having 11 members, used the first version of PPMT;
2http://coconotes.comin-ocw.org/

150

http://coconotes.comin-ocw.org/

7.1. Material and protocol

• The non-steering group, having 12 members, used the second version of PPMT.

A participant’s session lasted about an hour. They signed a consent form, were given
some reminders about pattern mining along with a presentation of PPMT’s features and user
interface. They then had to use PPMT to answer the following two batches of questions.

• First batch, 5 questions:

Q1.1 How many occurrences of the pattern “paused played VisibilityChange” are present
in the data?

Q1.2 How many users have the pattern “paused created played” in their traces?

Q1.3 How many patterns are discovered for user user049 for the 9:02 to 9:11am session
of October 5th?

Q1.4 Give two patterns with size > 2, present both in the first session of user user153 and
in the first session of user user177 (September 18th, from 9:38am to 11:15am).

Q1.5 We are interested in the events “X” that can follow or precede the pattern M = “Mdp_media_play

played”. How many “X M” or “M X” patterns are there?

• Second batch, 3 questions:

Q2.1 How many occurrences of the pattern “paused played Mdp_media_pause paused”
are present in the data?

Q2.2 How many patterns are discovered for user user049 in his first session on October
2nd (from 12:14 to 14:03)?

Q2.3 We are interested in the events “X” that can follow or precede the pattern M = “PlayerStart

Mdp_media_volumechange”. How many “X M” or “M X” is there?

Questions had to be answered in order, and the algorithm and user interface (filters and
selections) were reset between each question, allowing us to analyze each question’s answers
independently. Participants were not able to perform any modifying data action during the first
batch, the feature being explained between the two batches. After answering these questions,
the participants had to rate 16 affirmations on a 5-points Likert scale. These were target-
ing their overall feedback (3 affirmations), progressive pattern extraction (4 affirmations), data
modification (5 affirmations) and their perception of the algorithm (4 affirmations). Members of
the steering group had 7 more affirmations to rate that were about the action of steering the
algorithm. For every participant, their session concluded with a discussion where they were
asked about their use of PPMT: why they did (or did not) use the steering or modifying data
actions, and what they were expecting from it. They were also able to freely comment on their
experience.

151

Part II, Chapter 7 – Comparing the effect of various progressive interactions on data analysis tasks

Each question targets a specific action from our framework, which allows us to compare the
results between the two batches of questions for a given targeted action, as shown in table 7.1.
We designed questions 1.1, 1.2 and 2.1 to encourage constraining the algorithm on results
(pattern syntax), i.e. action A3. Questions 1.3, 1.4 and 2.2 were targeting constraining the
algorithm on data (a time period), i.e. action A2. Question 2.3 was designed to encourage
modifying data, i.e. action A1, with question 1.5 being its counterpart when this option is not
available. Notice that constraining the algorithm on results would only bring half of the expected
results to these two questions, since PPMT’s constraining on results only deals with prefixes,
thus only helping with the “M X” part of the questions.

Table 7.1: Correspondence between the two batches of questions. The last column indicates the
action we were targeting with each question.

Batch 1 Batch 2 Targeted action
Q1.1

Q2.1 Constraining on results (A3)
Q1.2
Q1.3

Q2.2 Constraining on data (A2)
Q1.4
Q1.5 Q2.3 Modifying data (A1)

Overall, when combining the two version of PPMT and the two batches of questions, we
ended up with four configurations regarding the various actions participants could do, as pre-
sented in table 7.2. Since the experiment was already long, and packed with a lot of information
to process for the participants, we restricted the scope of some of the interactions. Constraining
the algorithm on data was limited to targeting a time period, and modifying data was limited to
the creation of new event types from frequent patterns. We decided not to include the ability
to change the parameters because performing meaningful and educated parameter changes
would have required participants already familiar with sequential pattern mining.

Table 7.2: The four configurations of actions available for the participants. Actions are expressed
as part of our framework presented in subsection 4.1.1.

Batch 1 – Without modifying data Batch 2 – With modifying data
Steering group A2, A3 A1, A2, A3

Non-steering group (only view exploration) A1

152

7.2. Results

1.3 Collected data

During their use of PPMT, we measured the time participants took to answer each questions,
the correctness of their answers with regards to predefined expected values, and their use of
the available interactions. We also collected their rating of the 16 (23 for the steering group)
affirmations, and their remarks during the final interview.

2 Results

2.1 Time to answer questions

The time taken by participants to answer each question is presented in figure 7.1. By looking at
the median time we can see that members of the steering group were faster for every question,
except for 2.2. In order to verify our intuition that steering the algorithm leads to faster answers,
we computed Welch’s t-test for each question, which showed statistical significance for question
1.2 (p = 0.036) and 1.3 (p = 0.03).

Figure 7.1: Time (in seconds) needed to answer questions.

153

Part II, Chapter 7 – Comparing the effect of various progressive interactions on data analysis tasks

2.2 Correctness of answers

Data on the answers’ correctness is shown in table 7.3. It shows that questions 1.1, 1.2,
1.4 and 2.1 are mostly answered correctly, however looking at the actual answer reveals that
the majority of the wrong ones come from misreading the question. The main example is in
question 1.4, with a confusion between the “>” and “≥” comparison operators. One member
of the non-steering group is responsible for 3 out of the 5 absences of answer for this group.
Even though participants from the steering group were slightly more correct, Welch’s t-test did
not show any significant relation between the number of wrong answers and the participant’s
ability to steer the algorithm.

Table 7.3: Correctness of answers for each question across all participants. The data indicates
the percentage of wrong - right - no answers. Detailed numbers of answers are given between
parentheses.

Non-steering group
(12 members)

Steering group
(11 members)

Q1.1
25% - 75% - 0% 0% - 100% - 0%

(3 - 9 - 0) (0 - 11 - 0)

Q1.2
25% - 75% - 0% 18% - 82% - 0%

(3 - 9 - 0) (2 - 9 - 0)

Q1.3
67% - 25% - 8% 64% - 36% - 0%

(8 - 3 - 1) (7 - 4 - 0)

Q1.4
42% - 50% - 8% 18% - 73% - 9%

(5 - 6 - 1) (2 - 8 - 1)

Q1.5
50% - 42% - 8% 55% - 45% - 0%

(6 - 5 - 1) (6 - 5 - 0)

Q2.1
25% - 67% - 8% 18% - 82% - 0%

(3 - 8 - 1) (2 - 9 - 0)

Q2.2
75% - 17% - 8% 36% - 64% - 0%

(9 - 2 - 1) (4 - 7 - 0)

Q2.3
50% - 50% - 0% 45% - 55% - 0%

(6 - 6 - 0) (5 - 6 - 0)

TOTAL
45% - 50% - 5% 32% - 67% - 1%

(43 - 48 - 5) (28 - 59 - 1)

2.3 Interaction with the algorithm

Table 7.4 presents the number of actions performed by the participants (modifying data and
steer algorithm). As expected, questions 1.1, 1.2 and 2.1 led to steering on results while
questions 1.3, 1.4 and 2.2 led to steering on data. All members of the steering group performed

154

7.3. Discussion

a steering of the algorithm at least once, and most of them did it once per question. There are
however two notable exceptions, the first being two participants that did two steering on time
at question 1.3. They started by quickly targeting an approximation of the requested time
period, which they used to perform a first steering. While it was running, they took their time to
carefully target the requested time period. As soon as they where satisfied with their selection,
they started a second steering towards it. The second exception is with three members of the
steering group that respectively performed 3, 3 and 4 times the same steering on results for
question 2.1, before they realized the pattern they were expecting was already discovered but
had been hidden by their current filters.

Regarding data modification, 5 participants from the non-steering group and 7 from the
steering group performed this action once. It happened either at question 2.1 or 2.3, except for
one user in each group that did it in both questions.

Table 7.4: Number of times each action has been performed across all participants for each
question. Greyed-out cells indicate that the action was not available to the participants.

Group Action 1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 TOTAL
Non-steering Modifying data 2 0 4 6

Steering
Modifying data 2 0 6 8

Steering 6 7 7 6 8 18 8 6 66

2.4 Affirmation ratings

Results from the participants’ ratings of the affirmations are presented in figure 7.2. About the
global feedback, participants were unanimous about the ability of PPMT to allow data and pat-
tern exploration. Most also estimated that progressively extracting the patterns was useful, and
21 stated that they were able to know what the algorithm was doing at any moment. Regarding
the feedback on PPMT’s ability to help estimate the remaining analysis time, the participants
are divided. Data modification, on the other hand, is identified as a useful feature, both helping
save time and familiarize with the data. Finally, participants from the steering group unani-
mously reported that steering the algorithm helps save time and made them feel in control of
the algorithm, with seven of them considering it mandatory for an efficient analysis.

3 Discussion

3.1 Impact of interactions on answer time

One of our main hypotheses in this experiment was that being able to steer the algorithm
(either on results or on data) would help the steering group answer questions faster. This

155

Part II, Chapter 7 – Comparing the effect of various progressive interactions on data analysis tasks

Figure 7.2: Qualitative results.

is most visible for question 1.3, where members of the steering group were able to quickly
get the information they were looking for while the other group had to wait for the end of the
computation to be sure to provide the right answer. In comparison, question 2.3 was designed
to be answered by modifying the data, which involves no steering and can be done by both
groups, and the answer times are not significantly different.

When considering the median answer time, seven questions out of eight confirm our hy-
pothesis, but the fact that only two of these are statistically significant prevents us from drawing
a clear conclusion on this matter. However, we believe that this might be a consequence of the
way we designed the experiment, by deliberately choosing to target patterns that would allow
both groups to correctly answer any question in a reasonable time (approximately five minutes
at most). Targeting longer patterns would have added seconds to the steering group answer
times, while simultaneously adding minutes to the members of the non-steering group.

156

7.4. Conclusion

3.2 Impact of interactions on correctness

As explained in the previous paragraph, we designed the questions so that both groups could
be able to provide the correct answer in reasonable time. The correctness of answers is thus
similar for both groups, with the notable exception of question 2.2. When looking at the data, we
found out that the high number of wrong answers in the non-steering group was mostly caused
by 6 participants that gave up on waiting for the results and answered with estimates without
waiting for the end of the computation. While this would require further investigation, it might
indicate that even if being able to steer the algorithm does not bring better answers, it can help
avoid wrong ones in certain scenarios.

3.3 Use of available actions by the participants

When considering the feedback about the steering of the algorithm, we remarked that most
members of the steering group used it efficiently, as they did obtain the answer they were
looking for with only 1 steering per question. They consistently felt that being able to steer the
algorithm was a valuable feature, with one of them saying that "without [the ability to steer],
intermediate results would be way less useful". Another comment about the interestingness
of steering was that "for more open questions, having the ability to steer the algorithm would
have encouraged [him] to explore data, because [he] knows that [he] can investigate potential
insights".

Feedback on the ability to modify the data is more ambiguous. When considering the an-
swers to question 2.1, members of the non-steering group used it to create a single event from a
subpart of the target pattern, expecting that it would extract it faster than with the original data.
On the contrary, members of the steering group that used this action for this question were
mostly curious about it, not expecting faster results than what they could achieve by steering
the algorithm. This disparity was not encountered in question 2.3, for which members of both
groups that did modify the data identified the action as the “right way to do it”. When asking
participants that did not use this feature about their decision, some declared that they were
not expecting any clear benefit while others said that they feared that the time needed to apply
the data modification would be longer than waiting for the algorithm. This particular remark
could justify the need for predictive indicators as discussed in section 4.3. Finally, some of the
participants felt that it was not intuitive to modify the data, fearing that it would waste time or
lead them to “not having the right results”.

4 Conclusion

The experiment we described in this chapter allowed us to investigate the impact that inter-
actions between a human and a progressive algorithm have on the analysis process. Even

157

Part II, Chapter 7 – Comparing the effect of various progressive interactions on data analysis tasks

though our protocol shares some similarities with the one used by Badam et al. (2017), their
interest was in comparing a progressive workflow with a more classical one (which they call
“instantaneous”), focusing on the system’s user interface components. In our case, we focus
entirely on the progressive workflow, being interested in the underlying algorithm, its perception
by the analyst and the impact of the various interactions with the analysis process we imple-
mented. To our knowledge, this had not yet been done within the Progressive Visual Analytics
paradigm.

Our results seem to confirm our hypothesis that being able to steer the algorithm makes the
analysis process quicker, with no repercussion on the correctness of answers. On the other
hand, more investigation is needed to conclude on the impact of being able to modify the data,
since user feedback was really diverse on this matter, which may indicate that this specific
interaction is less intuitive for analysts.

Maybe due to its exploratory nature, this experiment gave us a wide range of feedback but
few statistically significant conclusions. This calls for further studies of this kind that we think
should benefit from the following aspects. First, they should be tailored to a specific subset
of the possible interactions, in order to understand how analysts perceive them and what their
respective impact on a progressive analysis process is. Secondly, they should involve ana-
lysts already familiar with the data being explored (or at least with an interest in this particular
dataset), especially in the case of exploratory tasks. This would ease the process of insight
generation, switching the focus of the participants to “how can I interact with the algorithm to
confirm or deny my hypotheses?”. Thirdly, we believe that subsequent studies should be per-
formed using different types of algorithms than sequential pattern mining, in order to compare
the findings from different types of data analysis techniques.

158

CHAPTER 8

GENERAL CONCLUSION

Progressive Visual Analytics is still a young research field that can only be brought to its full
potential if interaction with algorithms is deemed as important as progressive algorithms and
incremental visualization research. From our review of the literature, we identified the following
four challenges, either directly tied to Progressive Visual Analytics or specific to pattern mining
in a progressive context.

Clarify what “interaction” means in the
context of Progressive Visual Analytics,
as well as investigate the role of the al-
gorithm in the process.

Challenge PVA1

Investigate the consequences of interac-
tions between the human and the algo-
rithm on the analysis process.

Challenge PVA2

Investigate progressive pattern mining as
a tool for data exploration and not only for
pattern exploration.

Challenge PPM1

Investigate the ways to make a pattern
mining algorithm progressive, the rele-
vant interactions when using such algo-
rithm and how they should be imple-
mented.

Challenge PPM2

Through the course of this manuscript, we have presented six contributions to these chal-
lenges, of which we consider four to be major. In this last chapter, we recall these contributions
and discuss some of their interesting aspects as well as their limitations, before providing some
directions for future works.

159

1 Contributions

1.1 Major contributions

C1 – A study on interaction within a progressive process (Challenges PVA1, PVA2)
We proposed a framework that describes the different actions an analyst can perform when

interacting with a progressive algorithm (C1.1). By considering a generic description of a data
analysis system, we proposed a model of how these actions can impact said system (C1.2). We
also conducted an evaluation of the impact that “progressiveness” can have on an algorithm’s
performances (C1.3).

C2 – A clarification of the process of Progressive Visual Analytics, with regards to the
role of the algorithm in the process. (Challenge PVA1)

While our framework is in itself valuable to anyone interested in interactions in Progressive
Visual Analytics, it provided us with a new way of looking at existing progressive systems.
Doing so, we were able to propose a clarification of the meaning of the term steering, widely
used in the Progressive Visual Analytics literature (C2.1). From this, we were able to propose
an updated definition of Progressive Visual Analytics (C2.2). Combining these contributions
allowed us to extend the model of the Visual Analytics workflow from (Sacha et al., 2014) into a
model of the Progressive Visual Analytics process (C2.3). Our model adds progressive features
— Namely the different actions we identified — to more classical Visual Analytics elements. It
also highlights the importance of the algorithm during the analysis, by making it a first class
component of the process.

C3 – PPMT, a progressive pattern mining system. (Challenges PPM1, PPM2)
The practical contribution of this thesis is PPMT, a Progressive Pattern Mining system

(C3.1). Besides providing a usable tool to explore activity data using pattern mining techniques,
developing PPMT allowed us to put our theoretical contributions on interacting with a progres-
sive algorithm to the test. In particular, we applied our guidelines for the design of Progressive
Pattern Mining algorithms (C6), implemented our interaction framework (C1.1), and supported
some of the analysis tasks we identified (C5). An addition we reviewed PPMT’s compliance
with existing recommendations for the design of Progressive Visual Analytics systems (C3.2).

C4 – A user experiment focused on the impact of the interactions between the analyst
and the algorithm on a progressive analysis process. (Challenge PVA2)

We used PPMT to conduct a user experiment in which we focused on the impact of in-
teractions between the analyst and the algorithm on a progressive analysis process. During

160

this exploratory experiment participants had to use PPMT to answer several questions. We
gathered a variety of information: the correctness of answers, the time needed to perform the
tasks at hand, the number of times each interaction was performed, as well as feedback from
the participants. While mostly not statistically significant, the results tend to suggest that not all
interactions are equal from the point of view of the participants. While being able to steer the
algorithm was fairly intuitive and easily understood, being able to modify the data sometimes
felt unintuitive, with participants not always seeing how it could benefit the analysis process.

1.2 Secondary contributions

C5 – A data and task model for an analyst exploring temporal data with patterns, spe-
cialized from the general model of Andrienko and Andrienko (2006). (Challenge PPM2)

When considering Progressive Pattern Mining algorithm development, we wanted to provide
an exhaustive list of the tasks that can be performed when analyzing temporal data using
patterns. To do so, we used Andrienko and Andrienko (2006)’s task model as a basis, and
specialized it for the use of pattern mining techniques.

C6 – A set of five guidelines for the design of a progressive algorithm for pattern mining
in sequences. (Challenge PPM1)

Based on our task model and our experience in working with patterns, we proposed five
guidelines for the design of a progressive algorithm for pattern mining in sequences, which
we used when designing PPMT. It is important to note that these guidelines are to be used
alongside existing recommendations for the design of Progressive Visual Analytics systems.

2 Perspectives and future work

On October 2018, Progressive Visual Analytics was the focus of the Dagstuhl Seminar 18411,
entitled “Progressive Data Analysis and Visualization”. Its focus was on bringing together re-
searchers from the database, visualization and machine learning communities, in order to dis-
cuss the challenges associated with the notion of progressiveness, that each of these commu-
nities had started to address in their own terms.

Among the several directions identified in the seminar report (Fekete et al., 2019), perhaps
the most high-level one is the proposal of the notion of Progressive Data Science (Turkay et
al., 2018) as an overarching paradigm aiming at bringing the notion of progressiveness to the
entire Knowledge Discovery (KDD) process. Since our work is focused on the later stages of
the process, it would be interesting to explore the different ways in which it can (and can not)
interact with existing approaches towards bringing progressiveness to the earlier stages, such
as data selection, data cleaning and data transformation.

161

Going back to Progressive Visual Analytics, a common interest between our work and the
seminar’s is the human analyst that takes part in the process. Due to our focus on interaction
with the algorithm, we proposed a categorization of the tasks that can be performed to do so,
while the seminar’s discussions were aiming at characterizing the various types of Progressive
Visual Analytics users, identifying their roles, the tasks they want to perform, as well as their
focus and potential biases (Micallef et al. (2019), see table 8.1). It would be interesting to
consider our set of actions performed to interact with a progressive algorithm in light of this
characterization, in order to see how the two intersect. One could for example wonder if the
various elements of the characterization (roles, tasks and focus) tend to involve some actions
rather than others, or if any action can be relevant for any situation. Another interesting question
would be to explore which biases our actions tend to alleviate or reinforce.

Table 8.1: Characterization of Progressive Visual Analytics users. From Micallef et al. (2019).

Roles R1: Observer R2: Searcher R3: Explorer
T1: Ascertain, T4: Analyze, T7: Overview,

Tasks T2: Reason, T5: Refine, T8: Further,
T3: Understand T6: Compare T9: What-If

Focus F1: Data Space, F2: Algorithmic Space

Biases B1: Confirmation, B2: Illusion,
B3: Unnecessary waiting, B4: Misjudging uncertainties

When considering the topic of interaction between a human and a progressive algorithm, we
identify three main perspectives for future works. The first perspective is assistance to the
analyst. As previously said, interacting with an ongoing algorithmic computation is far from
a trivial process, and doing so raises some important questions. When dealing with these
interactions and their consequences any assistance from the system can be a valuable help,
as it allows analysts to focus on their main task, data exploration. We believe the indicators
for guiding an analyst we proposed in section 4.3 are relevant to this matter. However, they
are only a first step towards tackling this question, and more work is necessary to address it
completely. Should one decide to explore this question, it might be interesting to prioritize the
actions that were deemed less intuitive in our user experiment, namely the various forms of
modifying the data.

The second perspective is applying our framework to other algorithms to further explore
interaction in Progressive Visual Analytics. We designed our framework to be independent from
any algorithmic technique, focusing on a few categories of general actions rather than providing
a more detailed but specific categorization. Even though we reviewed existing work through
the lens of our framework, we only implemented its actions for pattern mining techniques. We

162

believe that applying our framework to other kinds of algorithms will be useful, in order to provide
a better understanding of what “interacting with an algorithm” means in a general sense.

The third perspective is the creation of natively progressive algorithms. As we were ex-
ploring the design of our progressive pattern mining algorithm, we modified an existing non-
progressive algorithm to augment it with progressive features. This allowed us to propose a set
of guidelines for the design of such algorithms, but we believe it is now necessary to conceive
algorithms with progressiveness in mind from the ground up, possibly by using existing tools
such as ProgressiVis (Fekete, 2015). Doing so will allow researchers to optimize for the specific
use case of Progressive Visual Analytics, and might lead to additional guidelines for the design
of such algorithms.

Additionally, studying the progressiveness of an algorithm’s change of parameters seems
an interesting aspect to study. Existing implementations of progressive systems, as well as
our own, provide ways to interact in a progressive way with the underlying data or with the
algorithm’s strategy, but changing the parameter values always leads to restarting the algorithm.
We believe that such interaction can be achieved in a progressive way, but that the parameters’
key role in an algorithm’s inner workings makes this a research topic of its own, that might be
more easily explored when building a progressive algorithm from the ground up rather than
when adapting an already existing non-progressive one.

163

REFERENCES

Agrawal, R., & Srikant, R., (1994), Fast Algorithms for Mining Association Rules in Large
Databases. in Proceedings of the 20th international conference on very large data bases
(pp. 487–499), VLDB ’94, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
retrieved from http://dl.acm.org/citation.cfm?id=645920.672836

Agrawal, R., & Srikant, R., (1995), Mining sequential patterns. in Data engineering, 1995. pro-
ceedings of the eleventh international conference on (pp. 3–14), IEEE.

Aigner, W., Miksch, S., Schumann, H., & Tominski, C., (2011), Visualization of time-oriented
data, Springer Science & Business Media.

Albers, S., (2003), Online algorithms: A survey, Mathematical Programming, 971, 3–26, doi:10.
1007/s10107-003-0436-0

Amar, R., & Stasko, J., (2004), Best paper: A knowledge task-based framework for design and
evaluation of information visualizations. in Ieee symposium on information visualization
(pp. 143–150), doi:10.1109/INFVIS.2004.10

Andrienko, N., & Andrienko, G., (2006), Exploratory analysis of spatial and temporal data: A
systematic approach, Springer Science & Business Media.

Angelini, M., & Santucci, G., (2013), Modeling incremental visualizations. in Proc. of the eurovis
workshop on visual analytics (eurova’13) (pp. 13–17).

Angelini, M., & Santucci, G., (2017), The dark side of progressive visual analytics. in Workshop
on visual analytics, information visualization and scientific visualization (wvis) in the 30th
conference on graphics, patterns and images (sibgrapi’17).

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T., (2002), Sequential pattern mining using a bitmap
representation. in Proceedings of the eighth acm sigkdd international conference on
knowledge discovery and data mining (pp. 429–435), KDD ’02, doi:10 .1145 / 775047 .
775109

Badam, S. K., Elmqvist, N., & Fekete, J.-D., (2017), Steering the Craft: UI Elements and Vi-
sualizations for Supporting Progressive Visual Analytics, Computer Graphics Forum, Eu-
rographics Conference on Visualization (EuroVis 2017), 363, 491–502, doi:10.1111/cgf.
13205

Bertini, E., & Lalanne, D., (2010), Investigating and reflecting on the integration of automatic
data analysis and visualization in knowledge discovery, ACM SIGKDD Explorations Newslet-
ter, 112, 9–18.

165

http://dl.acm.org/citation.cfm?id=645920.672836
https://dx.doi.org/10.1007/s10107-003-0436-0
https://dx.doi.org/10.1007/s10107-003-0436-0
https://dx.doi.org/10.1109/INFVIS.2004.10
https://dx.doi.org/10.1145/775047.775109
https://dx.doi.org/10.1145/775047.775109
https://dx.doi.org/10.1111/cgf.13205
https://dx.doi.org/10.1111/cgf.13205

Borodin, A., & El-Yaniv, R., (2005), Online computation and competitive analysis, cambridge
university press.

Brandes, U., & Pich, C., (2007), Eigensolver methods for progressive multidimensional scaling
of large data, in M. Kaufmann & D. Wagner (Eds.), Graph drawing (pp. 42–53), Berlin,
Heidelberg: Springer Berlin Heidelberg.

Card, S. K., Mackinlay, J. D., & Shneiderman, B., (1999), Using vision to think. in Readings in
information visualization (pp. 579–581), Morgan Kaufmann Publishers Inc.

Casas-Garriga, G., (2003), Discovering Unbounded Episodes in Sequential Data. (pp. 83–94),
doi:10.1007/978-3-540-39804-2_10

Chang, R., Ziemkiewicz, C., Green, T. M., & Ribarsky, W., (2009), Defining insight for visual
analytics, IEEE Computer Graphics and Applications, 292, 14–17, doi:10 .1109/MCG.
2009.22

Chittaro, L., Combi, C., & Trapasso, G., (2003), Data mining on temporal data: A visual approach
and its clinical application to hemodialysis, Journal of Visual Languages & Computing,
146, 591–620, Visual Data Mining, doi:https://doi.org/10.1016/j.jvlc.2003.06.003

Cook, K. A., & Thomas, J. J., (2005), Illuminating the path: The research and development
agenda for visual analytics, Pacific Northwest National Laboratory (PNNL), Richland, WA
(US).

Dean, T. L., & Boddy, M. S., (1988), An analysis of time-dependent planning. in Aaai (Vol. 88,
pp. 49–54).

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P., (1996), From Data Mining to Knowledge Dis-
covery in Databases, AI Magazine, 173, 37–37, doi:10.1609/AIMAG.V17I3.1230

Fekete, J.-D., (2015), ProgressiVis: a Toolkit for Steerable Progressive Analytics and Visualiza-
tion. in 1st Workshop on Data Systems for Interactive Analysis (p. 5), Chicago, United
States, retrieved from https://hal.inria.fr/hal-01202901

Fekete, J.-D., Fisher, D., Nandi, A., & Sedlmair, M., (2019), Progressive Data Analysis and Visu-
alization (Dagstuhl Seminar 18411), Dagstuhl Reports, 810, 1–40, doi:10.4230/DAGREP.
8.10.1

Fekete, J.-D., & Primet, R., (2016), Progressive Analytics: A Computation Paradigm for Ex-
ploratory Data Analysis, retrieved from https : / / arxiv. org / abs / 1607 . 05162 % 20https :
//arxiv.org/pdf/1607.05162.pdf

Fisher, D., Popov, I., Drucker, S., & schraefel m.c., m., (2012), Trust me, i’m partially right:
Incremental visualization lets analysts explore large datasets faster. in Proceedings of
the sigchi conference on human factors in computing systems (pp. 1673–1682), CHI ’12,
doi:10.1145/2207676.2208294

Fournier-Viger, P., Chun, J., Lin, W., Kiran, R. U., Koh, Y. S., & Thomas, R., (2017), A Sur-
vey of Sequential Pattern Mining (tech. rep. No. 1), retrieved from http://www.philippe-

166

https://dx.doi.org/10.1007/978-3-540-39804-2_10
https://dx.doi.org/10.1109/MCG.2009.22
https://dx.doi.org/10.1109/MCG.2009.22
https://dx.doi.org/https://doi.org/10.1016/j.jvlc.2003.06.003
https://dx.doi.org/10.1609/AIMAG.V17I3.1230
https://hal.inria.fr/hal-01202901
https://dx.doi.org/10.4230/DAGREP.8.10.1
https://dx.doi.org/10.4230/DAGREP.8.10.1
https://arxiv.org/abs/1607.05162%20https://arxiv.org/pdf/1607.05162.pdf
https://arxiv.org/abs/1607.05162%20https://arxiv.org/pdf/1607.05162.pdf
https://dx.doi.org/10.1145/2207676.2208294
http://www.philippe-fournier-viger.com/survey%7B%5C_%7Dsequential%7B%5C_%7Dpattern%7B%5C_%7Dmining.pdf
http://www.philippe-fournier-viger.com/survey%7B%5C_%7Dsequential%7B%5C_%7Dpattern%7B%5C_%7Dmining.pdf
http://www.philippe-fournier-viger.com/survey%7B%5C_%7Dsequential%7B%5C_%7Dpattern%7B%5C_%7Dmining.pdf

fournier-viger.com/survey%7B%5C_%7Dsequential%7B%5C_%7Dpattern%7B%5C_
%7Dmining.pdf

Fournier-Viger, P., Lin, J. C.-W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., & Lam, H. T.,
(2016), The spmf open-source data mining library version 2, in B. Berendt, B. Bringmann,
É. Fromont, G. Garriga, P. Miettinen, N. Tatti, & V. Tresp (Eds.), Machine learning and
knowledge discovery in databases (pp. 36–40), Cham: Springer.

Gabadinho, A., Ritschard, G., Mueller, N. S., & Studer, M., (2011), Analyzing and visualizing
state sequences in r with traminer, Journal of Statistical Software, 404, 1–37.

Gan, M., & Dai, H., (2010), A study on the accuracy of frequency measures and its impact on
knowledge discovery in single sequences. in Data mining workshops (icdmw), 2010 ieee
international conference on (pp. 859–866), doi:10.1109/ICDMW.2010.83

Garofalakis, M. N., Rastogi, R., & Shim, K., (1999), Spirit: Sequential pattern mining with regular
expression constraints. in Vldb (Vol. 99, pp. 7–10).

Glueck, M., Khan, A., & Wigdor, D. J., (2014), Dive in!: Enabling progressive loading for real-
time navigation of data visualizations. in Chi.

Green, T. M. [T. M.], Ribarsky, W., & Fisher, B., (2008), Visual analytics for complex concepts
using a human cognition model. in 2008 ieee symposium on visual analytics science and
technology (pp. 91–98), doi:10.1109/VAST.2008.4677361

Green, T. M. [Tera Marie], Ribarsky, W., & Fisher, B., (2009), Building and applying a human
cognition model for visual analytics, Information Visualization, 81, 1–13, doi:10.1057/ivs.
2008.28, eprint: https://doi.org/10.1057/ivs.2008.28

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., & Hsu, M.-C., (2000), Freespan: Fre-
quent pattern-projected sequential pattern mining. in Proceedings of the sixth acm sigkdd
international conference on knowledge discovery and data mining (pp. 355–359), KDD
’00, doi:10.1145/347090.347167

Han, J., Pei, J., & Yin, Y., (2000), Mining frequent patterns without candidate generation. (pp. 1–
12), doi:10.1145/342009.335372

Hetzler, E. G. [E. G.], Crow, V. L., Payne, D. A., & Turner, A. E., (2005), Turning the bucket
of text into a pipe. in Ieee symposium on information visualization, 2005. infovis 2005.
(pp. 89–94), doi:10.1109/INFVIS.2005.1532133

Hetzler, E. G. [Elizabeth G.], & Turner, A., (2004), Analysis experiences using information vi-
sualization, IEEE Computer Graphics and Applications, 245, 22–26, doi:10.1109/MCG.
2004.22

Huang, K.-Y., & Chang, C.-H., (2008), Efficient mining of frequent episodes from complex se-
quences, Information Systems, 331, 96–114, doi:10.1016/J.IS.2007.07.003

167

http://www.philippe-fournier-viger.com/survey%7B%5C_%7Dsequential%7B%5C_%7Dpattern%7B%5C_%7Dmining.pdf
http://www.philippe-fournier-viger.com/survey%7B%5C_%7Dsequential%7B%5C_%7Dpattern%7B%5C_%7Dmining.pdf
http://www.philippe-fournier-viger.com/survey%7B%5C_%7Dsequential%7B%5C_%7Dpattern%7B%5C_%7Dmining.pdf
http://www.philippe-fournier-viger.com/survey%7B%5C_%7Dsequential%7B%5C_%7Dpattern%7B%5C_%7Dmining.pdf
https://dx.doi.org/10.1109/ICDMW.2010.83
https://dx.doi.org/10.1109/VAST.2008.4677361
https://dx.doi.org/10.1057/ivs.2008.28
https://dx.doi.org/10.1057/ivs.2008.28
https://doi.org/10.1057/ivs.2008.28
https://dx.doi.org/10.1145/347090.347167
https://dx.doi.org/10.1145/342009.335372
https://dx.doi.org/10.1109/INFVIS.2005.1532133
https://dx.doi.org/10.1109/MCG.2004.22
https://dx.doi.org/10.1109/MCG.2004.22
https://dx.doi.org/10.1016/J.IS.2007.07.003

Huang, K.-Y., Chang, C.-H., & Lin, K.-Z., (2004), Prowl: An efficient frequent continuity mining
algorithm on event sequences. in Data warehousing and knowledge discovery (pp. 351–
360), Springer.

Iwanuma, K., Ishihara, R., Yo Takano, & Nabeshima, H., (2005), Extracting Frequent Subse-
quences from a Single Long Data Sequence: A Novel Anti-Monotonic Measure and a
Simple On-Line Algorithm. in Fifth ieee international conference on data mining (icdm’05)
(pp. 186–193), doi:10.1109/ICDM.2005.60

Joshi, M. V., Karypis, G., & Kumar, V., (1999), A universal formulation of sequential patterns.
Keim, D. A., Mansmann, F., Schneidewind, J., Thomas, J., & Ziegler, H., (2008), Visual Analyt-

ics: Scope and Challenges, doi:10.1007/978-3-540-71080-6_6
Keim, D. A., Mansmann, F., Schneidewind, J., & Ziegler, H., (2006), Challenges in visual data

analysis. in Proceedings of the international conference on information visualisation (pp. 9–
14), doi:10.1109/IV.2006.31

Keim, D. A., Mansmann, F., & Thomas, J., (2010), Visual analytics: How much visualization and
how much analytics?, SIGKDD Explor. Newsl. 112, 5–8, doi:10.1145/1809400.1809403

Keim, D. A., Panse, C., Sips, M., & North, S. C., (2004), Visual data mining in large geospatial
point sets, IEEE Computer Graphics and Applications, 245, 36–44, doi:10.1109/MCG.
2004.41

Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., & Melançon, G., (2008), Visual
Analytics: Definition, Process, and Challenges, in A. Kerren, J. T. Stasko, J.-D. Fekete, &
C. North (Eds.), Information Visualization (4950, pp. 154–175), Lecture Notes in Com-
puter Science, DOI: 10.1007/978-3-540-70956-5_7, Springer Berlin Heidelberg, retrieved
November 19, 2015, from http://link.springer.com/chapter/10.1007/978-3-540-70956-5_7

Keim, D., Kohlhammer, J., Ellis, G., & Mansmann, F., (2010), Mastering the information age:
Solving problems with visual analytics.

Kim, H., Choo, J., Lee, C., Lee, H., Reddy, C., & Park, H., (2017), Pive: Per-iteration visualization
environment for real-time interactions with dimension reduction and clustering, retrieved
from https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14381

Laxman, S., Sastry, P. S., & Unnikrishnan, K. P., (2007), A fast algorithm for finding frequent
episodes in event streams. in Proceedings of the 13th acm sigkdd international confer-
ence on knowledge discovery and data mining - kdd ’07 (p. 410), doi:10.1145/1281192.
1281238

Lee, A., Girgensohn, A., & Zhang, J., (2004), Browsers to support awareness and social interac-
tion, IEEE Computer Graphics and Applications, 245, 66–75, doi:10.1109/MCG.2004.24

Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., & Nystrom, D. M., (2004), VizTree: a Tool for
Visually Mining and Monitoring Massive Time Series Databases. in Proceedings of the

168

https://dx.doi.org/10.1109/ICDM.2005.60
https://dx.doi.org/10.1007/978-3-540-71080-6_6
https://dx.doi.org/10.1109/IV.2006.31
https://dx.doi.org/10.1145/1809400.1809403
https://dx.doi.org/10.1109/MCG.2004.41
https://dx.doi.org/10.1109/MCG.2004.41
http://link.springer.com/chapter/10.1007/978-3-540-70956-5_7
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14381
https://dx.doi.org/10.1145/1281192.1281238
https://dx.doi.org/10.1145/1281192.1281238
https://dx.doi.org/10.1109/MCG.2004.24

thirtieth international conference on very large data bases - volume 30 (p. 1380), Morgan
Kaufmann Publishers, retrieved from https://dl.acm.org/citation.cfm?id=1316811

Liu, Z., & Heer, J., (2014), The effects of interactive latency on exploratory visual analysis, 20,
2122–2131.

Luo, C., & Chung, S., (2004), A scalable algorithm for mining maximal frequent sequences
using sampling. in Tools with artificial intelligence, 2004. ictai 2004. 16th ieee international
conference on (pp. 156–165), doi:10.1109/ICTAI.2004.16

MacEachren, A., (1995), How maps work: Representation, visualization, and design, New York:
Guilford Press.

Mackinlay, J. D., Robertson, G. G., & Card, S. K., (1991), The perspective wall: Detail and
context smoothly integrated. in Proceedings of the sigchi conference on human factors in
computing systems (pp. 173–176), ACM.

Mannila, H., & Toivonen, H., (1996), Discovering generalized episodes using minimal occur-
rences. in Kdd (Vol. 96, pp. 146–151).

Mannila, H., Toivonen, H., & Inkeri Verkamo, A., (1997), Discovery of frequent episodes in
event sequences, Data Mining and Knowledge Discovery, 13, 259–289, doi:10.1023/A:
1009748302351

Mannila, H., Toivonen, H., & Verkamo, A. I., (1995), Discovering frequent episodes in se-
quences. in Proceedings the first conference on knowledge discovery and data mining
(pp. 210–215).

Masseglia, F., Cathala, F., & Poncelet, P., (1998), The psp approach for mining sequential
patterns, in J. Żytkow & M. Quafafou (Eds.), Principles of data mining and knowledge
discovery (Vol. 1510, pp. 176–184), Lecture Notes in Computer Science, doi:10.1007/
BFb0094818

Méger, N., & Rigotti, C., (2004), Constraint-Based Mining of Episode Rules and Optimal Win-
dow Sizes. (pp. 313–324), doi:10.1007/978-3-540-30116-5_30

Micallef, L., Schulz, H.-J., Angelini, M., Aupetit, M., Chang, R., Kohlhammer, J., . . . Santucci,
G., (2019), The human user in progressive visual analytics. in Eurovis (short papers)
(pp. 19–23).

Mooney, C. H., & Roddick, J. F., (2013), Sequential pattern mining – approaches and algorithms,
ACM Comput. Surv. 452, 19:1–19:39, doi:10.1145/2431211.2431218

Mühlbacher, T., Piringer, H., Gratzl, S., Sedlmair, M., & Streit, M., (2014), Opening the Black
Box: Strategies for Increased User Involvement in Existing Algorithm Implementations,
IEEE Transactions on Visualization and Computer Graphics, 2012, 1643–1652, doi:10.
1109/TVCG.2014.2346578

Nesbitt, K. V., & Barrass, S., (2004), Finding trading patterns in stock market data, IEEE Com-
puter Graphics and Applications, 245, 45–55, doi:10.1109/MCG.2004.28

169

https://dl.acm.org/citation.cfm?id=1316811
https://dx.doi.org/10.1109/ICTAI.2004.16
https://dx.doi.org/10.1023/A:1009748302351
https://dx.doi.org/10.1023/A:1009748302351
https://dx.doi.org/10.1007/BFb0094818
https://dx.doi.org/10.1007/BFb0094818
https://dx.doi.org/10.1007/978-3-540-30116-5_30
https://dx.doi.org/10.1145/2431211.2431218
https://dx.doi.org/10.1109/TVCG.2014.2346578
https://dx.doi.org/10.1109/TVCG.2014.2346578
https://dx.doi.org/10.1109/MCG.2004.28

Orlando, S., Perego, R., & Silvestri, C., (2004), A new algorithm for gap constrained sequence
mining. in Proceedings of the 2004 acm symposium on applied computing (pp. 540–547),
SAC ’04, doi:10.1145/967900.968014

Pei, J., & Han, J., (2002), Constrained frequent pattern mining, ACM SIGKDD Explorations
Newsletter, 41, 31, doi:10.1145/568574.568580

Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M.-c., (2001), Prefixs-
pan: Mining sequential patterns efficiently by prefix-projected pattern growth. (pp. 215–
224).

Pezzotti, N., Lelieveldt, B. P. F., v. d. Maaten, L., Höllt, T., Eisemann, E., & Vilanova, A., (2017),
Approximated and user steerable tsne for progressive visual analytics, IEEE Transactions
on Visualization and Computer Graphics, 237, 1739–1752, doi:10 .1109 /TVCG.2016.
2570755

Pirolli, P., & Card, S., (2005), The sensemaking process and leverage points for analyst tech-
nology as identified through cognitive task analysis. in Proceedings of international con-
ference on intelligence analysis (Vol. 5, pp. 2–4), McLean, VA, USA.

Plaisant, C., Mushlin, R., Snyder, A., Li, J., Heller, D., & Shneiderman, B., (1998), Lifelines:
Using visualization to enhance navigation and analysis of patient records. in Proceedings
of the amia symposium (p. 76), American Medical Informatics Association.

Raveneau, V., Blanchard, J., & Prié, Y., (2016), Toward an open-source tool for pattern-based
progressive analytics on interaction traces, IEEE VIS 2016 Workshop on Temporal and
Sequential Event Analysis, Baltimore, MD, USA.

Raveneau, V., Blanchard, J., & Prié, Y., (2018), Progressive sequential pattern mining: Steer-
able visual exploration of patterns with ppmt. in Visualization in data science.

Sacha, D., Stoffel, A., Stoffel, F., Kwon, B. C., Ellis, G., & Keim, D., (2014), Knowledge genera-
tion model for visual analytics, Visualization and Computer Graphics, IEEE Transactions
on, 20, 1604–1613, doi:10.1109/TVCG.2014.2346481

Sadallah, M., Encelle, B., Maredj, A.-E., & Prié, Y., (2015), Towards reading session-based indi-
cators in educational reading analytics, in G. Conole, T. Klobučar, C. Rensing, J. Konert,
& E. Lavoué (Eds.), Design for teaching and learning in a networked world (pp. 297–310),
Cham: Springer International Publishing.

Savary, L., & Zeitouni, K., (2005), K.: Indexed bit map (ibm) for mining frequent sequences. in
In: Proc. 9th european conference on principles and practice of knowledge discovery in
databases (pkdd (pp. 659–666), Springer.

Schmidt, G. S., Chen, S., Bryden, A. N., Livingston, M. A., Rosenblum, L. J., & Osborn, B. R.,
(2004), Multidimensional visual representations for underwater environmental uncertainty,
IEEE Computer Graphics and Applications, 245, 56–65, doi:10.1109/MCG.2004.35

170

https://dx.doi.org/10.1145/967900.968014
https://dx.doi.org/10.1145/568574.568580
https://dx.doi.org/10.1109/TVCG.2016.2570755
https://dx.doi.org/10.1109/TVCG.2016.2570755
https://dx.doi.org/10.1109/TVCG.2014.2346481
https://dx.doi.org/10.1109/MCG.2004.35

Schulz, H., Angelini, M., Santucci, G., & Schumann, H., (2016), An enhanced visualization pro-
cess model for incremental visualization, IEEE Transactions on Visualization and Com-
puter Graphics, 227, 1830–1842, doi:10.1109/TVCG.2015.2462356

Seno, M., & Karypis, G., (2002), Slpminer: An algorithm for finding frequent sequential patterns
using length-decreasing support constraint. in Data mining, 2002. icdm 2003. proceed-
ings. 2002 ieee international conference on (pp. 418–425), doi:10 . 1109 / ICDM . 2002 .
1183937

Servan-Schreiber, S., Riondato, M., & Zgraggen, E., (2018), ProSecCo: Progressive Sequence
Mining with Convergence Guarantees. in 2018 ieee international conference on data min-
ing (icdm) (pp. 417–426), doi:10.1109/ICDM.2018.00057

Shneiderman, B., (1996), The eyes have it: A task by data type taxonomy for information visu-
alizations. in Proceedings of the 1996 ieee symposium on visual languages (pp. 336–),
VL ’96, Washington, DC, USA: IEEE Computer Society, retrieved from http://dl.acm.org/
citation.cfm?id=832277.834354

Srikant, R., & Agrawal, R., (1996), Mining sequential patterns: Generalizations and perfor-
mance improvements. in Proceedings of the 5th international conference on extending
database technology: Advances in database technology (pp. 3–17), EDBT ’96, London,
UK, UK: Springer-Verlag, retrieved from http://dl.acm.org/citation.cfm?id=645337.650382

Stolper, C., Perer, A., & Gotz, D., (2014), Progressive visual analytics: User-driven visual explo-
ration of in-progress analytics, IEEE Transactions on Visualization and Computer Graph-
ics, 2012, 1653–1662, doi:10.1109/TVCG.2014.2346574

Teoh, S. T., Ma, K., Wu, S. F., & Jankun-Kelly, T. J., (2004), Detecting flaws and intruders with
visual data analysis, IEEE Computer Graphics and Applications, 245, 27–35, doi:10.1109/
MCG.2004.26

Turkay, C., Pezzotti, N., Binnig, C., Strobelt, H., Hammer, B., Keim, D. A., . . . Rusu, F., (2018),
Progressive Data Science: Potential and Challenges, arXiv: 1812.08032, retrieved from
http://arxiv.org/abs/1812.08032

van der Maaten, L., & Hinton, G., (2008), Visualizing Data using t-SNE, Journal of Machine
Learning Research, 9Nov, 2579–2605, retrieved from http: / /www. jmlr.org/papers/v9/
vandermaaten08a

van Wijk, J. J., (2005), The value of visualization. in Vis 05. ieee visualization, 2005. (pp. 79–
86), doi:10.1109/VISUAL.2005.1532781

Wang, T. D., Plaisant, C., Shneiderman, B., Spring, N., Roseman, D., Marchand, G., . . . Smith,
M., (2009), Temporal summaries: Supporting temporal categorical searching, aggrega-
tion and comparison, Visualization and Computer Graphics, IEEE Transactions on, 156,
1049–1056.

171

https://dx.doi.org/10.1109/TVCG.2015.2462356
https://dx.doi.org/10.1109/ICDM.2002.1183937
https://dx.doi.org/10.1109/ICDM.2002.1183937
https://dx.doi.org/10.1109/ICDM.2018.00057
http://dl.acm.org/citation.cfm?id=832277.834354
http://dl.acm.org/citation.cfm?id=832277.834354
http://dl.acm.org/citation.cfm?id=645337.650382
https://dx.doi.org/10.1109/TVCG.2014.2346574
https://dx.doi.org/10.1109/MCG.2004.26
https://dx.doi.org/10.1109/MCG.2004.26
https://arxiv.org/abs/1812.08032
http://arxiv.org/abs/1812.08032
http://www.jmlr.org/papers/v9/vandermaaten08a
http://www.jmlr.org/papers/v9/vandermaaten08a
https://dx.doi.org/10.1109/VISUAL.2005.1532781

Ward, M. O., Grinstein, G., & Keim, D., (2010), Interactive data visualization: Foundations, tech-
niques, and applications, CRC Press.

Williams, M., & Munzner, T., (2004), Steerable, progressive multidimensional scaling. in Pro-
ceedings of the ieee symposium on information visualization (pp. 57–64), INFOVIS ’04,
doi:10.1109/INFOVIS.2004.60

Wong, P. C., & Thomas, J., (2004), Visual analytics, IEEE Computer Graphics and Applications,
245, 20–21, doi:10.1109/MCG.2004.39

Yang, Z., & Kitsuregawa, M., (2005), Lapin-spam: An improved algorithm for mining sequential
pattern. in Data engineering workshops, 2005. 21st international conference on (pp. 1222–
1222), doi:10.1109/ICDE.2005.235

Yi, J. S., ah Kang, Y., Stasko, J. T., & Jacko, J. A., (2007), Toward a deeper understanding of
the role of interaction in information visualization, Visualization and Computer Graphics,
IEEE Transactions on, 136, 1224–1231.

Yi, J. S., Stasko, Y. A. K. J. T., & Jacko, J. A., (2008), Understanding and characterizing insights:
How do people gain insights using information visualization? in Proceedings of the 2008
conference on beyond time and errors: Novel evaluation methods for information visual-
ization 2008, beliv’08 (p. 1), doi:10.1145/1377966.1377971

Zaki, M., (2001), Spade: An efficient algorithm for mining frequent sequences, Machine Learn-
ing, 421-2, 31–60, doi:10.1023/A:1007652502315

Zgraggen, E., Galakatos, A., Crotty, A., Fekete, J. D., & Kraska, T., (2017), How progressive
visualizations affect exploratory analysis, IEEE Transactions on Visualization and Com-
puter Graphics, 238, 1977–1987, doi:10.1109/TVCG.2016.2607714

Zhang, M., Kao, B., Yip, C.-L., & Cheung, D., (2001), A gsp-based efficient algorithm for mining
frequent sequences. in Proc. of ic-ai (pp. 497–503).

Zhang, S., Zhang, C., & Yang, Q., (2003), Data preparation for data mining, Applied Artificial
Intelligence, 175-6, 375–381, doi:10.1080/713827180, eprint: https://doi.org/10.1080/
713827180

Zilberstein, S., (1996), Using anytime algorithms in intelligent systems, AI magazine, 173, 73.

172

https://dx.doi.org/10.1109/INFOVIS.2004.60
https://dx.doi.org/10.1109/MCG.2004.39
https://dx.doi.org/10.1109/ICDE.2005.235
https://dx.doi.org/10.1145/1377966.1377971
https://dx.doi.org/10.1023/A:1007652502315
https://dx.doi.org/10.1109/TVCG.2016.2607714
https://dx.doi.org/10.1080/713827180
https://doi.org/10.1080/713827180
https://doi.org/10.1080/713827180

Appendices

173

APPENDIX A

EXISTING PATTERN MINING ALGORITHMS

This appendix provides a very brief overview of some existing pattern mining algorithms. For a
detailed description, one should refer to the relevant papers.

1 Apriori-like algorithms

Table A.1: Non-exhaustive overview of existing Apriori-like Sequential Pattern mining algo-
rithms. Strategy can be either Breadth- (BFS) or Depth-first search (DFS). Data format can be
either vertical (V) or horizontal (H). Pattern type can be either sequential patterns (Seq. patterns) or
Episodes

Algorithm Reference Pattern type Strategy Data format
AprioriAll Agrawal and Srikant (1995) Seq. patterns BFS H
AprioriSome Agrawal and Srikant (1995) Seq. patterns BFS H
DynamicSome Agrawal and Srikant (1995) Seq. patterns BFS H
GSP Srikant and Agrawal (1996) Seq. patterns BFS H
PSP Masseglia, Cathala, and

Poncelet (1998)
Seq. patterns BFS H

SPIRIT Garofalakis, Rastogi, and
Shim (1999)

Seq. patterns BFS H

MFS M. Zhang, Kao, Yip, and
Cheung (2001)

Seq. patterns BFS H

SPADE Zaki (2001) Seq. patterns Both V
SPAM Ayres, Flannick, Gehrke,

and Yiu (2002)
Seq. patterns DFS V

CCSM Orlando, Perego, and Sil-
vestri (2004)

Seq. patterns BFS V

MSPS Luo and Chung (2004) Seq. patterns BFS H
LAPIN-SPAM Yang and Kitsuregawa

(2005)
Seq. patterns DFS V

IBM Savary and Zeitouni (2005) Seq. patterns BFS V
WinEpi Mannila, Toivonen, and

Verkamo (1995)
Episodes BFS H

MinEpi Mannila and Toivonen
(1996)

Episodes BFS H

174

AprioriAll, AprioriSome and DynamicSome use a similar strategy to extract sequential
patterns form a transaction database. The data is first sorted by customer id and time rather
than sequence, a format that is then used to find frequent item types, which are called litemset.
Each sequence is then transformed by replacing its items with the corresponding litemset.
The final step is to count the pattern occurrences, where the three algorithms differ. AprioriAll
counts every sequence, unlike AprioriSome and DynamicSome that can skip short sequences
included in longer ones since they focus on maximal patterns.

GSP (Generalised Sequential Patterns) extracts frequent patterns by generating candidate
patterns whose occurrences are then searched within the data. Candidate of size n are gen-
erated by combining the frequent patterns of size n − 1. The algorithm allows one to specify
constraints such as the gap between sequences or consecutive events.

PSP uses a strategy similar to that of GSP, but differs in the data structure used to store the
candidates, making use of a prefix-tree rather than a hash table.

The SPIRIT (Sequential Pattern mIning with Regular expressIon consTraints) family of al-
gorithms uses the same strategy as GSP, but uses regular expressions to constrain the set
of expected patterns. Should the constraint be anti-monotone, it can be applied during the
candidate generation. Otherwise, a relaxed form of the initial constraint is used, which leads
to different algorithms depending on the level of relaxation (hence the term of “family of algo-
rithms”).

MFS (Maximal Frequent Sequences) jumpstarts its candidate generation by using GSP on a
sample of the data, which provides an estimate of the set of frequent patterns over the complete
data. This set estimate can then be used to generate candidate patterns, which removes then
need to start from patterns of size 1 since this algorithm is only interested in maximal patterns.

SPADE (Sequential PAttern Discovery using Equivalence classes) transforms the data to in-
crease its performances, enabling the discovery of frequent patterns with at most three passes
over the initial database.

SPAM (Sequential PAttern Mining using a bitmap representation) uses a strategy similar to
GSP, but uses bitmaps (one for each event type) to speed up the candidate generation process.
This benefit is however balanced by the added constraint that the aforementioned bitmaps need
to be stored in memory.

CCSM (Cache-based Constrained Sequence Miner) uses a strategy similar to GSP for the
extraction of frequent patterns of size 1 and 2. It then transforms the data to continue with a
strategy similar to SPADE. For the second part, a cache is used to store the location of already-
known frequent patterns, which speeds up the search for occurrences of patterns that show a
common prefix.

MSPS (Maximal Sequential Patterns using Sampling) uses a strategy similar to MFS, where
they extract maximal patterns on a sample of the data in order to generate candidates. Although

175

the sampling technique differs, it provides a similar benefit in that all the sub-patterns can be
pruned once a longer pattern is found to be frequent.

LAPIN-SPAM (Last Position INduction Sequential PAttern Mining) is an optimization over
SPAM due to a more efficient pruning of potential candidate patterns.

IBM (Indexed Bit Map for mining frequent sequences) first reads the data and stores it in an
indexed bit map. Once this transformation is complete, a candidate generation and verification
process similar to GSP is conducted using this new data structure.

WinEpi mines both serial and parallel episodes, using windows and state automata to count
the occurrences of candidate patterns.

MinEpi is similar to WinEpi, but focuses on minimal occurrences of episodes to compute
their support.

2 Pattern growth algorithms

Table A.2: Non-exhaustive overview of existing pattern growth pattern mining algorithms. Strat-
egy can be either Breadth- (BFS) or Depth-first search (DFS).

Algorithm Reference Pattern type Strategy
FreeSpan Han, Pei, Mortazavi-Asl, et al. (2000) Sequential patterns DFS
PrefixSpan Pei et al. (2001) Sequential patterns DFS
SLPMiner Seno and Karypis (2002) Sequential patterns DFS
PROWL Huang, Chang, and Lin (2004) Episodes DFS

FreeSpan (Frequent pattern-projected Sequential Pattern mining) uses one pass over the
data to construct a set of projected databases (one for each frequent event type) that do not
include events of having a non-frequent type. The remaining process of candidate generation
and verification is then performed using only these projected databases.

PrefixSpan (Prefix-projected Sequential Pattern mining) is based on FreeSpan. Although
the strategy is similar, the projected databases distinguish between the prefix and suffix of
frequent patterns to improve the candidate generation.

SLPMiner allows one to specify a minimum support constraint that varies based on the
length of the candidate patterns (i.e. the minimum support is higher for shorter patterns com-
pared to longer ones). As a consequence of this feature, this algorithm differs from the others
in that a pattern can be frequent while one of its sub-patterns is not.

PROWL (Projected Window Lists) extracts episodes not only within a given transaction but
also across several ones.

176

APPENDIX B

FIRST USER EXPERIMENT

Even though evaluating PPMT’s interactive interface to perform an interactive progressive anal-
ysis is our main goal, conducing such evaluation can only lead to significant results if classical
data exploration tasks can be performed efficiently. As such, this experiment was designed to
validate PPMT’s ability to allow one to perform such classical data analysis tasks, in a progres-
sive context where patterns are provided as intermediate results by the mining algorithm.

Participants

For this experiment, we recruited 8 participants, 6 men and 2 women, between 21 and 25 years
old that were all Computer Science Master students from the university of Nantes.

Dataset

We used the coconotes dataset, described in subsection 6.1.3. It contains the anonymized
activity data of students using the COCoNotes1 video annotation platform. It spans a four
months period from September 2016 to January 2017, totaling 201.000 events, 32 event types
and 211 users. Event types range from login and navigation actions to interactions with the
video player (play, pause, change volume, move to a specific timestamp. . .), and annotation
management (create, edit, share. . .) events.

Protocol

The participants first signed a consent form, before being introduced to the dataset and the
platform from which its data has been collected. We then presented PPMT’s relevant features
and user interface. They then were given a list of six tasks and had 40 minutes to answer
them using PPMT. After the 40 minutes, the participants had to rate 27 affirmations on a 5-
points Likert scale. These were targeting their overall feedback (3 affirmations), progressive
pattern extraction (4 affirmations), data modification (5 affirmations) and their perception of the
algorithm (4 affirmations). Members of the steering group had 7 more affirmations to rate that

1http://coconotes.comin-ocw.org/

177

http://coconotes.comin-ocw.org/

were about the action of steering the algorithm. For every participant, their session concluded
with a discussion where they were asked about their opinion on PPMT’s usability and ability to
explore activity data.

During this experiment, the progressive algorithm provided intermediate results, but the
analyst were not able to perform any interaction with the algorithm.

Exploration tasks

Participants had to perform the following list of tasks:

1. Which events will never be part of a frequent pattern, and why?

2. What strategy does the mining algorithm use to extract frequent patterns?

3. What observations can you make about occurrences of the created played pattern, for
example with regards to their distribution over time or over the users?

4. Describe the behavior of user user011 during their first session.

5. What observations can you make about the users that have events of type Mdp_media_seeked
within their trace?

6. What observations can you make about the patterns paused played and Mdp_media_pause
Mdp_media_play and their occurrences? For example, with regards to their distribution
over time or over the users? What conclusions or hypotheses can you draw from these
observations?

These tasks have been designed to provide incentives for the participants to leverage the
entire set of features of PPMT, except for the ones that involve interaction with the algorithm.
Questions 1 and 2 target their understanding of the algorithm’s behavior, questions 4 and 5
target the traces’ analysis, and questions 3 and 6 target the patterns’ analysis.

Results and discussions

Answers to the exploration tasks

While the algorithm’s strategy is well understood (question 2: 6 correct answers, 1 bad one and
1 without answer), estimating future results based on intermediate ones and the algorithm’s
parameters has proven to be difficult (question 1: 1 correct answer correctly explained, 3 correct
answers wrongly explained and 4 without answer). While this could indicate that PPMT does
not support these tasks well enough, it also seems reasonable to assume that these difficulties

178

can come from the limited time participants had, in addition to them not being very familiar with
the pattern mining process.

With regards to tasks that target the traces’ analysis, answers to the question about a lo-
cal analysis are mostly correct (question 4: 3 correct descriptions accompanied by intuitions
based on observations, 3 correct descriptions and 2 irrelevant answers). However, the ques-
tion targeting a specific event type presents more ambiguous answers (question 5: 4 correct
observations about the temporal distribution and 4 without answer).

Finally, tasks targeting the patterns’ analysis present positive results for the analysis of a
single pattern (question 3), both using the time dimension (7 correct analysis of temporal dis-
tribution, although not very developed, and 1 without answer) and using the user dimension (3
correct analysis of user distribution, 3 correct descriptions and 1 without answer). Comparing
several patterns (question 6) also shows positive results when it involves their temporal distri-
butions (6 correct answers, 1 wrong answer, 1 without answer), but is less successful when it
involves their distribution over the users (4 barely relevant answers and 4 without answer).

Post-manipulation evaluation

After having performed the aforementioned tasks, the overall feeling of the participants about
PPMT’s ability to allow one to explore a dataset and its underlying patterns while formulating
hypotheses about these data is positive (over 3 questions: 15 completely agree, 7 partially
agree and 2 neutral answers). The same observation can be made about PPMT’s ability to
support data exploration tasks (over 5 questions: 26 completely agree, 9 partially agree, 2
neutral answers and 3 partially disagree).

The majority of participants’ feedback indicate that PPMT enables interacting with the data
over any dimension (event type, time or user), although two participants indicate that they
do not really agree with the fact that PPMT allows one to approach the data from the user
dimension. A similar distinction between approaching the data using the user dimension and
versus using the time dimension is also present when exploring the patterns. One can also
note that PPMT’s representation of pattern occurrences are received positively, as opposed to
its ability to support pattern comparison tasks, for which most of the feedback is neutral, with a
similar number of positive and negative perceptions.

With regards to the progressive pattern mining algorithm, the overall feedback is neutral,
or evenly spread between positive and negative reception when considering the perception
of its current state. However, the fact that patterns are provided progressively has mostly
been perceived as not detrimental to the analysis, even though its usefulness in this particular
version of PPMT is not highlighted (3 partially agree, 1 neutral answers, 3 partially disagree
and 1 disagree), due to the absence of interactions with the algorithm.

179

Figure B.1: Participants’ ratings of PPMT’s ability to allow one to analyze a dataset in a progressive
pattern mining context.

180

APPENDIX C

EVOLUTION OF PPMT’S USER

INTERFACE

Figure C.1: PPMT in October 2016.

181

Figure C.2: PPMT in January 2017.

Figure C.3: PPMT in February 2017.

182

Figure C.4: PPMT in April 2017.

Figure C.5: PPMT in June 2017.

183

Figure C.6: PPMT in October 2017.

Figure C.7: PPMT in October 2017.

184

Figure C.8: PPMT in October 2017.

Figure C.9: PPMT in January 2018.

185

Titre: Interaction en Analyse Visuelle Progressive. Une application
à la fouille progressive de motifs séquentiels.

Mot clés : Analyse Visuelle Progressive, Fouille Progressive de Motifs, Fouille de Motifs Séquentiels,
Interaction, Données Séquentielles

Resumé : Le paradigme de Progressive Visual
Analytics (PVA) a été proposé en réponse aux dif-
ficultés rencontrées par les Visual Analytics lors du
traitement de données massives ou de l’utilisation
d’algorithmes longs, par l’usage de résultats inter-
médiaires et par l’interaction entre humain et al-
gorithmes en cours d’exécution. Nous nous in-
téressons d’abord à la notion d’“interaction”, mal
définie en PVA, dans le but d’établir une vision
structurée de ce qu’est l’interaction avec un algo-
rithme en PVA. Nous nous intéressons ensuite à
la conception et à l’implémentation d’un système

et d’un algorithme progressif de fouille de motifs
séquentiels, qui permettent d’explorer à la fois les
motifs et les données sous-jacentes, en nous con-
centrant sur les interactions entre analyste et al-
gorithme. Nos travaux ouvrent des perspectives
concernant 1/ l’assistance de l’analyste dans ses
interactions avec un algorithm dans un contexte
de PVA; 2/ une exploration poussée des interac-
tions en PVA; 3/ la création d’algorithmes native-
ment progressifs, ayant la progressivité et les in-
teractions au cœur de leur conception.

Title: Interaction in Progressive Visual Analytics. An application to
progressive sequential pattern mining

Keywords : Progressive Visual Analytics, Progressive Pattern Mining, Sequential Pattern Mining,
Interaction, Sequential Data

Abstract : The Progressive Visual Analytics (PVA)
paradigm has been proposed to alleviate difficul-
ties of Visual Analytics when dealing with large
datasets or time-consuming algorithms, by using
intermediate results and interactions between the
human and the running algorithm. Our work is
twofold. First, by considering that the notion of
“interaction” was not well defined for PVA, we fo-
cused on providing a structured vision of what in-
teracting with an algorithm in PVA means. Sec-
ond, we focused on the design and implementa-

tion of a progressive sequential pattern mining al-
gorithm and system, allowing to explore both the
patterns and the underlying data, with a focus on
the analyst/algorithm interactions. The perspec-
tives opened by our work deal with 1/ assisting
analysts in their interactions with algorithm in PVA
settings; 2/ further exploring interaction in PVA ; 3/
creating natively progressive algorithms, for which
progressiveness and interaction are at the core of
the design.

	Introduction
	I State of the art
	From Visual Analytics to Progressive Visual Analytics
	Visual Analytics
	Origins and early definitions
	Current definition
	The importance of insights
	Generating knowledge with Visual Analytics
	Modeling the tasks performed with Visual Analytics
	Examples of existing Visual Analytics tools
	Degree of automation in Visual Analytics systems
	Towards Progressive Visual Analytics

	Progressive Visual Analytics
	Definition and origin of the progressive paradigm
	Progressive algorithms compared to related algorithm types
	Existing implementations of Progressive Visual Analytics systems
	Designing Progressive Visual Analytics systems
	Interaction-related user studies in Progressive Visual Analytics

	Conclusion – Challenges for Progressive Visual Analytics

	Sequential Pattern Mining
	Mining patterns in sequences
	General definitions
	Sequential patterns
	Episodes
	Constraints on the mining process
	Counting pattern occurrences

	Sequential Pattern mining algorithms
	Apriori-like algorithms
	Pattern growth algorithms
	Implementations

	Conclusion – Towards Progressive Pattern Mining
	Sequential Pattern mining within Progressive Visual Analytics
	Progressiveness in Sequential Pattern mining

	II Propositions
	Interactions in Progressive Visual Analytics
	A framework of possible interactions with an algorithm in Progressive Visual Analytics
	Interactions between an analyst and an algorithm
	Progressive Visual Analytics systems seen through our framework

	An updated definition of Progressive Visual Analytics
	Indicators to guide the analysis
	Indicators for the analyst
	Indicators in existing systems

	Conclusion

	Towards Progressive Pattern Mining
	Analysis tasks performed with patterns
	Choosing a task model
	Andrienko and Andrienko (2006): data model
	Andrienko and Andrienko (2006): task model
	Data model for sequential patterns
	Task model for patterns
	Leveraging our task model

	Guidelines for Progressive Pattern Mining algorithms
	Conclusion

	PPMT: a Progressive Pattern Mining Tool to explore activity data
	Design process
	Organization of the process
	Main design choices
	The coconotes dataset

	Features
	Technical features
	Supported analysis tasks

	User interface
	Dataset-related panels
	Algorithm and pattern-oriented panels
	Visualization-oriented panels
	Dataset selection

	Architecture
	Logical architecture
	Implemented architecture

	Progressive pattern mining in PPMT
	Design and implementation of the algorithm
	Steering the algorithm
	The algorithm
	Comparison with existing Progressive Pattern Mining algorithms

	Evaluations
	Compliance with existing recommendations
	Performances of a progressive pattern mining algorithm derived from an existing algorithm

	Conclusion

	Comparing the effect of various progressive interactions on data analysis tasks
	Material and protocol
	Experiment material
	Experiment protocol
	Collected data

	Results
	Time to answer questions
	Correctness of answers
	Interaction with the algorithm
	Affirmation ratings

	Discussion
	Impact of interactions on answer time
	Impact of interactions on correctness
	Use of available actions by the participants

	Conclusion

	General conclusion
	Contributions
	Major contributions
	Secondary contributions

	Perspectives and future work

	References
	Appendices
	Existing pattern mining algorithms
	Apriori-like algorithms
	Pattern growth algorithms

	First user experiment
	Evolution of PPMT's user interface

